A framework for secure electronic voting

Stefan Popoveniuc and Poorvi L. Vora

The George Washington University
Department of Computer Science
poste,poorvi@gwu.edu

Abstract. We describes a framework in which to view the end-to-end-
independently-verifiable (E2E) voting systems based on mixnets. We use
the framework to invent new systems that combine front and back-ends
from existing systems.

1 Introduction

Recent advances in cryptographic voting systems have led to the invention of
several voting systems that are end-to-end-independently-verifiable (E2E) by
the voter [4,8,13,6]. These systems provide receipts to the voter that can be
used to ensure that her vote is counted, without revealing the vote. The mixnet-
based E2E systems use different front-ends (for ballot preparation and the voting
ceremony) and back-ends (for vote tallying and tally auditing), and most of
the existing literature on these systems describes a single, complete mechanism
that does not typically address the components separately. This paper describes
the existing mixnet-based E2E voting systems in a single framework, and, by
combining hitherto uncombined front and back-ends, presents new systems with
hitherto unachieved properties.

As mentioned above, mixnet-based voting systems can be decomposed into
two modules: the back-end and the front-end. The front-end is responsible for
producing the inputs for the back-end: it defines what the ballots look like (either
paper or electronic), what the voting ceremony is, how the receipt is produced,
and how the voter interacts with the system after the casting process. It is re-
sponsible for the verifiable casting of votes. The back-end is the mixnet [9] itself,
responsible for shuffling and eventually decrypting the ballots in an auditable
fashion. It provides the verifiable tallying of the votes. With a number of options
for front and back-ends, a jurisdiction can choose a back-end and a front-end
that are most appropriate for a particular election. Some front-ends may be
more usable, while others may protect privacy better. Some back-ends may be
simpler to audit, while others yield higher performance. It is possible to use a
single back-end and multiple front-ends for the same election. Having a range
of choices gives freedom to the election authorities, who are directly responsible
for choosing the technology most appropriate for their needs.

The contribution of this work is two-fold: on the one hand, it is a survey of
front-ends and back-ends of the practical end-to-end mixnet based voting sys-
tems. On the other hand, it describes how they can be combined (see Table 1)

in ways that yield hitherto unachieved properties. We survey three back-ends:
mixnets using public keys and onions [9], punchscanian mixnets using pre-committed
paths and onions [13], and pointer-based mixnets [7], with pre-committed paths
and no onions. The back-ends differ in the simplicity of the design, robustness
and efficiency. We also survey four front-ends: visual cryptography [4], shuf-
fling the order of the candidates (Prét & Voter [8]), indirection-based encryption
(PunchScan [13]), and a front-end that is an overlay to the current optical scan
(Scantegrity I1[6]). Proofs are outside the scope of this paper.

The rest of the paper presents related work, the front and back-ends with
their advantages and disadvantages, and a framework that generalizes the front
and back-ends. Within this framework, the client can choose the end-to-end
voting solution that is best suited for her needs. Table 1 presents the existing
systems and the contributions of this paper.

Onion mixnets|Punchscanian mixnet|Pointer mixnet
Visual Crypto v *
Prét a Voter v * *
PunchScan * v *
Scantegrity II * * Ve

Table 1. Recent mixnet-based voter-verifiable voting systems and the compo-
nents they use. v’ stands for work that has already been done while % represents
new concepts proposed in the current work.

2 Previous Work

In Scratch&Vote [1], Adida and Rivest explain how their homomorphic scheme
would work with two types of front-ends (Prét a Voter and PunchScan). Van
de Graaf [14] notices similarities between PunchScan and Prét & Voter and de-
scribes a detailed mechanism that allows the use of a Prét a Voter front-end with
a PunchScan back-end. Lundin [11] investigates from a much larger perspective,
all the aspects of voting, including registration, election method, election me-
chanics, election management, transfer methods, etc. Chaum [2] suggests writing
a common XML format for representing the results of the scanning of PunchScan
and Prét a Voter ballots to allow the interchange of scanning technologies.

Our work is general, presenting the advantages of various ballot styles, and
suggesting general ways of connecting them to mixnet based back-ends that
have distinct properties. At the same time, our work provides details about each
possible combination of front and back ends.

3 The Front-end

The front-end represents the manner in which the ballots are presented to the
voters and the voter’s interaction with the system. In the voting protocol, the
front-end represents a voter-verifiable encryption of the vote; the receipt bears
the encrypted vote. The ballots presented in this work fall in two categories.
The first category is that of symmetric ballots: those that have two parts,
each of which is sufficient to recover the vote (CVV- Sect. 3.4 and PunchScan—
Sect. 3.5). On visual examination of the two parts appropriately laid out, the
voter is able to visually confirm that each part bears the encryption of her vote.
The second category is that of asymmetric ballots: those that have two parts, of
which a specific one is needed to recover the vote (Prét & Voter— Sect. 3.6 and
Scantegrity II- Sect. 3.7). In this category too, the voter visually examines both
parts of the ballot laid out in a particular manner (side by side) to confirm that
the encrypted vote represents her ballot. Scantegrity II requires an indirection
not present in other schemes, we discuss this in more detail later.

3.1 The General Receipt

We now describe more formally a receipt. In all the voting systems we study in
this paper, the voter gets a receipt of serial number s € S, where S is the set of
all serial numbers. A vote is v € V, where V is the set of all possible votes. £ is
the encryption cipher used to generate the receipt, £ = (V, R, K, E, D), where
R is the space of all ciphertexts for £; K the keyspace, and £ : K xV — R and
D : K xR — V the encryption and decryption functions respectively. Finally,
a function f : S — K provides the association between the key and the receipt.
Note here that the encryption schemes used are deterministic; serial numbers are
unique, keys are rarely, if ever, reused, and the encryption cipher is a private-
key encryption, though f may involve the use of public key encryption. Using
this notation, the receipt obtained by a voter in a correct instance of the voting
protocol is the triplet (s;x; E(f(s),v)) where v is the vote, and x represents
any other information, such as onions and commitments made by the voting
system. This receipt is the only vote-related information to enter the voting
system, and the tally is constructed from this information. In general, we will
represent the receipt by the triplet (s,z,r), where s is the serial number, z any
additional information on the receipt (for example, strings claimed to be onions
by the system), and r the purported encrypted vote. Note that we are not always
assured that » = E(f(s),v) and that x is correctly formed.

3.2 The General Printing Audit

All front-ends discussed here are based on paper ballots; this enables the voter
to retain a physical artefact of the voting process (a paper receipt), and provides
some resemblance to voting with paper ballots, a process familiar to most voters.
(We do not claim that all the E2E voter-verifiable voting systems are as easy
to use as regular paper-ballot voting, we simply indicate that the choice of a

paper receipt, as opposed to any other type of receipt, has not been arbitrary).
At some point, hence, the ballots and/or receipts need to be printed. Verifying
the correctness of the printed ballots is referred to as a printing audit, and is
carried out either before, during or after the election.

A correct printing provides the following. (a) A Correct Encryption. In sys-
tems such as Prét a Voter, where the voter encrypts the vote, it enables the voter
to do so correctly by simply filling up the ballot. In systems such as the visual
encryption based system of Chaum, it simply prints the correct encryption. (b)
Correct Decryption. It enables the system to correctly decrypt the vote. There
are two possibilities for the mixnet-based decryption. First, the key may be ref-
erenced through s—either through a lookup table indexed by s, or by performing
function f on s. In this case, a printing audit checks that the key used for en-
cryption is indeed f(s). Second, the receipt may bear additional information in
the form of an onion that is used by successive mixes to effectively decrypt the
receipt using the correct key. In this case, the printing audit checks that the key
represented by the onion(s) is that used for encrypting the vote.

The most general printing audit allows each voter to choose two ballots, one
to vote with, and the other one to spoil and verify. Because the choice of which
ballot to spoil is made at random by the voters, the probability that an incorrect
printing is undetected drops exponentially as the number of misprinted ballots
increases. Variations on this method are possible, for example the voter does
not actively spoil a ballot, as it becomes a natural result of the voting process:
some voters simply make mistakes when filling them in, spoil them, and ask for a
second ballot; the spoilt ones may be checked by the election authorities. Unfilled
ballots may be checked at the end of an election. The printing of ballots made
of two symmetric parts may also be audited by examining only the ballot half
chosen for a receipt. Because the system cannot predict beforehand which half
will be chosen, the probability that an incorrect printing is undetected decreases
exponentially with the number of incorrect ballots. Leftover ballots can also be
used after the election to perform the printing audit.

3.3 Types of Receipts

After all ballots are cast, the voting system makes available all receipts on a
public bulletin board. The voter can check that the triplet (s,z,r) is among
these. If she notices a discrepancy, she can file a complaint. There are two types
of receipts the voter can get: proof receipts and indication receipts. A proof
receipt is one that is produced and “signed” by the voting system itself (or by
an election official). When a voter holds a proof receipt that is inconsistent with
the information on the public bulletin board, and the digital signature scheme
used is assumed secure, it is sufficient evidence that the bulletin board contains
erroneous information. This, in turn, is an irrefutable indication that something
went wrong with the election. On the other hand, indication receipts provide only
a hint that something might have gone wrong, but additional evidence needs to
be provided in order to prove that something went wrong. Indication receipts can
be produced by voters themselves and are not “signed” by any election authority.

We now describe in more detail the “voting ceremony” for several front-ends,
and indicate how the front-ends are specific instances of the general description
above. The voting ceremony consists of the specific steps a voter needs to take to
cast a ballot, and, eventually, to verify later that the ballot was printed correctly
and recorded as cast. We will describe the receipt; in particular, we will describe
the encryption process. We will intentionally not describe the value in x, as that
depends on the back-end.

3.4 Ballots using visual cryptography

Chaum [3] describes a ballot made of multiple parts, such that the combination
of all parts makes the text readable; but no information is revealed about the
vote when only a subset is available. The first instantiation of this idea used
visual cryptography [12].

e
e e o
A el

(a) A ballot con- (b) One layer can represent

taining a vote for with equal probability a vote

ZERO. for either ZERO or X, de-
pending on what the other
layer is

Fig. 1. A Sample Ballot using Visual Cryptography

A detailed explanation on how the layers are built can be found in [15]. On
the top layer, the odd pixels are generated pseudo-randomly, while on the bottom
layer, the even pixels are generated pseudo-randomly. The rest of the pixels are
generated in a way that constructs the clear text image of the ballot only when
the two layers are overlaid. The voter is able to read her vote when the two pages
are overlaid (see Fig. 1(a)), but when looking at a single layer, no information
is leaked about the voter’s choice (see Fig. 1(b)). Because of the size of the font
and the redundancy in the glyphs, the vote can be later recovered from a single
layer, unambiguously.

A more formal description is as follows. A correct receipt is of the form
(s,z,v ® k,) where @ denotes bitwise XOR, k, represents the key for the layer
corresponding to the receipt. The other layer is encrypted using key kz. The
keys are generated using different seeds for a pseudo-random number generator;

ko = fo(s) = F(Sign(s,p,)), where Sign(s,a) is the digital signature of the
serial number using the private key of the polling machine that corresponds to
layer a, and F' the public pseudo-random number generator. If the two receipts
are (Sq,Za,) and (sa,xa,ra), because of the manner in which the bits in each
layer are presented, the voter can visually check that r, & rgz = v, sq = sz. The
information in = depends on the back-end used.

The voting ceremony On election day, the voters go to their assigned polling
places, authenticate themselves as legitimate voters and uses a touch screen to
make the desired selections. When finished, the computer prints the two lay-
ers, the voter checks that, when the two layers are overlaid, her vote is shown.
The voter choose one of the layers as a receipt and watches the other one be-
ing destroyed. The computer prints additional information on the receipt, that
allows to check that the pseudo-random pixels on the chosen layers have been
constructed correctly. A digital signature is also printed. After election day, any
voter can go to the election authority web site, enter the serial number for her
ballot, check that the ballot is there and that it matches the page she possesses:
the pixelized image and the strings on the receipt should be the same as the
ones posted on the web site.

Advantage and disadvantages The advantages of this approach are the high
degree of generality (it can accommodate any type of contest, including write-
ins), the receipt is created automatically, it allows a fixed order of candidates, it
offers excellent privacy (except the fact that the voting machines knows the clear
text votes, and can thus compute an independent total), and there is no need
for a strict chain of custody. The disadvantages are: the voters are not familiar
with the receipt interface, the order of events must be precise, the alignment of
pixels is difficult, the receipt is difficult to check by the voter, it is very difficult
to implement in practice (one reason is the alignment of the two pages), it does
not accommodate disabled voters, it does not allow manual recounts, the cost is
very high (because one machine per booth is needed), and the administration of
the system is difficult.

3.5 Ballot with indirection

To allow the same separation of information as in the previous case, the following
technique can be used: on one page each candidate is associated with a random
symbol; on another page the same set of symbols appears in some random or-
der. For convenience the two pages can be overlayed, with the top page having
holes and the symbols on the bottom page being visible through the holes. (see
Fig. 2(a)). This technique was first proposed in PunchScan [5] and therefore this
style of ballot is known as a PunchScan ballot.

In PunchScan, the voter uses a dauber to mark the selection of candidates.
The diameter of the ink disc is greater than the diameter of the hole punched
through the top page, therefore the dauber leaves a mark on both the top and

(a) A sample Punch-
Scan ballot. When the
two pages are over-
layed, the symbols on

(b) A voted ballot.
Looking at each layer
individually, one can-
not say that the mark

3573 a @
b Yes
a No
O @\ 3573

(c) Given only one layer
of the ballot, the marks
on that layer are equally
likely to represent a vote

the bottom page are is for “Yes” or for for any candidate.
visible through the “No”.
holes.

Fig. 2. PunchScan’s ballot

the bottom ballot pages. Fig. 2(b) contains a ballot voted for “Yes”. Because
the order of the symbols on the two pages of a ballot is different (and indepen-
dently and uniformly distributed), one cannot determine which mark is for which
candidate by viewing only one voted page. The association of candidates with
symbols, and the order of the symbols on the bottom page, can be uniformly
random, or pseudorandom.

Thus, in PunchScan, the receipt is of the form: (s,z, E(f(s),v)) where E
is viewed as a permutation of the plaintext space (all encryptions are trivially
permutations of plaintext space) composed of two distinct permutations: the first
the association of candidate choice with dummy variables on the front (viewed
as a map of candidates in canonical order, such as alphabetical order, to dummy
variables in canonical order) and the second the association of dummy variables
with positions on the back (again the map can be between canonical orderings).
With abuse of notation, using the same notation for the key and the encryption
function it represents, the key f(s) = 04(s) o 05(s) is the composition of two
permutations, each a well-defined function of s.

The voting ceremony On election day, the voters go to their assigned polling
places, authenticate themselves as legitimate voters, and before seeing the ballot,
the voters commit to which page to keep as a receipt. In the privacy of a booth,
the voter marks the hole that contains the symbol associated with her favorite
candidate, and, when done, scans the page chosen in the first step, keeps it
and shreds the other one. After election day, any voter can go to the election
authority web site, enter the serial number for her ballot, check that the ballot
is there and that it accurately resembles the page she possesses: her marks are

recorded correctly and the order of the symbols on her receipt is the same as the
order posted.

Advantages and disadvantages The advantages of this method are: the re-
ceipt is created automatically and is easily checkable by the voter, it allows a
fixed order of the candidates on the ballot, it offers excellent privacy (the scan-
ner does not know the clear text votes), the cost is low, the dispute resolution is
easy and it accommodates disabled voters (see the PunchScan website for a brief
description of such capability, which also follows for Prét a Voter; this capability
is, however, not described in detail yet, a paper is in preparation). The disadvan-
tages are: it does not accommodate write-ins (but it accommodates most types
of contests), the voters are not familiar with the voting interface (the indirection
may cause usability problems), the voting machine cannot provide an indepen-
dent tally, it needs a strict chain of custody before the ballots reach the voters
and it does not allow a manual recount.

3.6 Permuting Candidate Order

Prét & Voter [8] proposes a simplification of the two-part visual cryptography
ballot presented in Sect. 3.4, see Fig. 3(a). The ballot is printed on a single page
of normal paper, with the names of the candidates on the left and the places
to mark on the right. A voter makes a mark next to her favorite candidate
(see Fig. 3(b)). The names of the candidates are permuted on each ballot and
when the left part is separated from the right part, the marks on the right are no
longer associated with candidates (see Fig. 3(c)). This ballot style is an example
of a ballot that has two parts (left and right) but the information is distributed
asymmetrically in the two parts. Thus the Prét a Voter receipt is of the form
(s,z, E(f(s),v)) where f(s) is a permutation.

The voting ceremony On election day, the voters go to their assigned polling
places, authenticate themselves as legitimate voters, gets two ballots from the
election officials and chooses one to audit (printing correctness check) and one
to use for voting. In the privacy of the voting booth, the voter makes an X on
the right side of the ballot, next to her favorite candidate. The voter separates
the list of candidates (on the left) from the marks (on the right), destroys the
left side and scans the right side. The marks are recorded and made public. The
scanned side is kept by the voter and anytime after election day, the voter can go
to the election authority web site, enter the serial number for her ballot, check
that the ballot is there and that it accurately resembles the page she possesses.

Advantages and disadvantages The advantages of this method are: the vot-
ers are somewhat familiar with the interface,the receipt is created automatically
and is easily checkable by the voters, it accommodates disabled voters, and it
offers excellent privacy (the scanner does not know the clear text votes) at a low

Candidate 1 Mark
Nihilist ;
Buddhist |
Anarchist 1
Sophist ;

barn
|

(a) A sample Prét a

Voter ballot. A permuted
list of candidates is on
the left

Candidate
Nihilist

Mark Buddhist

Anarchist

| Mark X Sophist
Candid
‘ Candidate
Nihilist |
| X Sophist
Buddhist
| 471 Anarchist
Anarchist | B .
| uddhist
Sophist _—
| 471 Nihilist

(b) A voted Prét a Voter
ballot. When the right
side is separated from
the left side the mark is

(c) Given only the right
side, the mark is equally
likely to represent a vote
for any candidate.

not a clear vote anymore

Fig. 3. Prét a Voter ballot

cost. The disadvantages of the method are: it does not accommodate write-ins
(but it accommodates most types of contests), it does not allow a fixed order of
candidates, the voting machine cannot provide an independent tally, it needs a
strict chain of custody before the ballots reach the voters, and it does not allow
for a manual recount.

3.7 Standard optical scan ballot, encoded receipt

Scantegrity [7] and Scantegrity II [6] addresses the usability concerns of Punch-
Scan while keeping the order of candidates fixed on all ballots. A Scantegrity
ballot contains two asymmetrical parts, but because the two parts are never
separated, it is printed on a normal piece of paper that will not be divided in
any way. One part of the ballot is a normal optical scan ballot, which can be
scanned and used by any certified optical scan voting system. The other part is
a set of confirmation numbers associated with the candidates (e.g. printed next
to the candidates). The association is different on each ballot. See Fig. 4 for a
sample Scantegrity II ballot.

The difference between Scantegrity and Scantegrity II is that the voter only
gets the confirmation numbers for the candidates she is choosing in Scantegrity
IT, while in Scantegrity the voter is able to see the confirmation numbers for all
the candidates. The immediate benefit is that is in the dispute resolution pro-
cess: voters that claim to have their ballots registered improperly must provide
the confirmation numbers, which are random and hard to predict. The election
authority can then discard the complains that contain confirmation numbers
that do not appear on the indicated ballot and race.

4711
O Alice

47t O Ali i 4711 Code K i Bob
; ice
O Alice 471

O Bob & Bob € Alice
O Bob

4711 Code _ 4711 CodeK |

(a) A sample (b) A voted (¢) The symbols on the receipt
Scantegrity bal- Scantegrity bal- may correspond to any candidate.
lot, just like a lot. When the
regular optical oval is filled in,
scan ballot. a confirmation

number appears.

Fig. 4. Scantegrity Ballot: Blue is the ballot form, and Yellow is the receipt. Typ-
ically, the indication receipt may contain the serial number and the confirmation
number.

The voting ceremony On election day, the voters go to their assigned polling
places, authenticate themselves as legitimate voters, gets two ballots from the
election officials and chooses one to audit (printing correctness check) and one to
use for voting. In the privacy of the voting booth, the voter marks the ballot as
a normal optical scan ballot. On a separate piece of paper, she writes down the
confirmation numbers associated with the voted candidates, tears off the bottom
part of the ballot, with the serial number of the ballot on it and keeps it. The
ballot is scanned by a regular optical scanner. After election day, any voter can
go to the election authority web site, enter the serial number and check that the
symbols she wrote down are on the web site.

Because the receipt the voter gets is an indication receipt (as opposed to a
proof receipt), if the voter sees on the web site a different set of symbols then
the ones on her own piece of paper, she has to have a way of challenging the
records on the bulletin board. Depending on the length and unpredictability of
the confirmation numbers, a set of dispute resolution techniques are possible;
see [6] and [7] for details.

Advantages and disadvantages The advantages of Scantegrity II are: the
voters are highly familiar with the interface, it is highly usable by the election
officials, the voters can easily check their receipt, the dispute resolution process
is easy, it allows for a fixed order of the candidates, it accommodates disabled
voters, the voting machine can compute an independent tally, it allows a manual
recount, the cost is very low, and it is very easy to administrate. The disadvan-
tages of the method are: it does not accommodate write-ins, the voting machine
knows the clear text votes and it needs a strict chain of custody after the voters
mark their ballots to protect privacy.

Table 2 summarizes the advantages and disadvantages of the four types of

front-ends.
Visual Crypto |PunchScan Prét a Voter Scantegrity 11

Generality Any type of con-|Most practical | Most practical | Most practical
test contests contests contests

Familiarity with the|Low Low Medium High

interface

Receipt Creation Automatic Automatic Automatic Requires voter ef-

fort

Voter verification Difficult Easy Easy Easy

Supports write-ins |Yes No No No

Fixed order of the|Yes Yes No Yes

candidates

Ease of implementa-|Difficult Easy Easy Easy

tion in practice

Accommodates dis-|No Yes Yes Yes

abled voters

The voting machine|Yes No No Yes

knows the clear text
votes and can com-
pute the tally

Chain of custody to
protect privacy

No

Before the ballot
reaches the voter

Before the ballot
reaches the voter

After the ballot is
marked

olution

Manual recount No No No Yes

Cost High Low Low Low
Ease of administra-|Difficult Moderate Moderate Easy
tion

Ease of dispute res-|Easy Easy Easy Easy

Table 2. Evaluation of various types of ballots

4 The Back-end

The back-end is responsible for producing clear text ballots from the encrypted
receipts produced during the voting ceremony. The process has to be fully au-
ditable by anyone, yielding universal verifiability, while preserving the secrecy of
the votes. In two of the three cases presented here, the back-end is also respon-
sible for creating the blank ballots initially.
Three main techniques are presented:

— classical mixnets using public keys and onions. The path followed by a vote
is determined on-the-fly.

— punchscanian mixnet using pre-established and committed paths and onions.
— pointer-based mixnet with pre-established paths and no onions.

We briefly describe each back-end and suggest new simple ways to connect the
back-end with a front-end described in Sect. 3 with which it was not associated
before, as shown in Table 1

4.1 Traditional mixnets

Mixnets have been classically associated with onion routing because the payload
can be viewed as an onion, with multiple layers of encryption; each mix strips off
one of the layers. Besides the onion, the payload also contains a value (a ballot
in the case of voting systems). After removing one layer of encryption from the
onion, a mix finds a seed (sometimes called a germ) that is used to transform
the value in the payload. This way, the output value is uncorrelated with the
input value.

In general, the payload is a pair (Onion,Ballot). Thus, when the back-
end is a traditional mixnet, the value of z for all the front-ends contains the
onion. The serial number from the receipt is stripped after voters have checked
the presence of the receipt on the bulletin board, and the triplet (s,z,r) is
reduced to the pair (z,r), referred to as (Onion,Ballot). (Ballot hence rep-
resents the encrypted vote). For a particular mix j and a particular input-
output pair, the input is Payload; = (Onion;,Ballot;) and the output is
Payload; ; = (Onionjy1,Ballot;y1), The relation between the two onions is

Onion; = ENC(puplickeyosuix) (S€€d;, Onion; 1) (1)

where Enc(pupiickeyosmix) represents encryption with the public key of mix j and
the comma represents concatenation. The (j+ 1)*" onion is obtained by decrypt-
ing the j onion and removing seed;: Onion; = Dec(privatekeyosmix) (0nion; 1) \
seed;, where \ denotes removal from a string. The relation between the input
and the output ballot is

Ballot,; = Fj(seed;)(Ballot;) (2)

where Fj(seed;) € G,¥j for group G with operation ®, and F} is a public
function. An important aspect is that the Onion and the Ballot have to travel
together through the mix. Thus), Fj(seed;)(:) = D(f(s),:) decrypts the en-
crypted receipt.

A mixnet may be audited by either providing a zero-knowledge proof of
correctness or using a randomized partial checking (RPC) technique [10]. In
the latter case, the mix is required to reveal seed; for a significant fraction
of the inputs (or outputs). Having the seed, the auditor (sometimes called the
challenger or verifier) can check Eq. 1 and Eq. 2 for all the revealed input-output
pairs.

The traditional mixnet is used as the back-end of the voting scheme using
visual cryptography proposed by Chaum, and by Prét a Voter. In the scheme of

Chaum, G is the set of all bitwise XORs acting on n-bit strings, and F};(seed;)
corresponds to a bitwise XOR using the pseudo-random string generated us-
ing seed;. For z; € G corresponding to XOR with string v, 21 © 22 = 23
where y3 = y1 @ y2, with @ corresponding to bitwise XOR. In this case, v =
©; Fj(seed;)(r) = r @ k,. That is, the composition of the processing of individ-
ual mixnet entities corresponds to the bitwise XOR of the receipt bitstring with
the bitstring used to encrypt it. In Prét a Voter, G is the set of permutations
on sets of size ¢, the number of candidates, ® is permutation-composition and
F = Poh where h is a one way function and P is a function that generates a
permutation on a set of size ¢ given a seed. v =), Fj(seed;)(r) = D(f(s),r)
is the inverse of the permutation represented by f(s), applied to receipt r. That
is, the composition of the processing of individual mixnet entities corresponds
to the inverse of the permutation used for encryption.

Advantages and disadvantages The advantages of onion mixnets are their
truly distributed nature, support for dynamic paths and the possibility of setting
up the system before the details of the elections are known. The disadvantage is
low efficiency, both when processing the ballots and during the audit process.

We now describe the combination of the onion mixnet backend with the
front-ends of PunchScan and Scantegrity.

PunchScan ballot with onion mixnet Recall that (; Fj(seed;)(:) = D(f(s),:
) for the onion mixnet, and f(s) = o,(s)ooz(s) for the PunchScan ballot. Hence,
for a PunchScan front-end and an onion mixnet back-end, the ballot needs an
onion, which will be contained in x. The onion contains seeds which will gen-
erate permutations whose composition will invert the encrypting permutation
0a(8) 0 0a(s). Thus, G is the set of permutations on a set of size ¢, and © is the
composition of permuations. In order to generate the ballot, the ballot manufac-
turing facility produces a pseudorandom permutation, say o, as the composition
of several pseudorandom permutations o, (as many as there are mixes) each
generated from a random seed. o is decomposed into two permutations to be
used for the two pages of the ballot, by choosing one of the permutations uni-
formly at random. The seeds for the o; are buried into the onion, which is part
of x. Decryption involves generalting the corresponding o, and performing its

inverse. That is, Fj(seed;) =0, .

Scantegrity ballot with onion mixnet The best dispute resolution prop-
erties for the indication receipts of Scantegrity are obtained when the set of
confirmation numbers is large, when a confirmation number is used exactly once
among all the ballots, and when the probability of guessing a valid confirma-
tion number of any candidate in a receipt is low. When the Scantegrity ballot
is used with onion mixnet, a permutation of a canonical ordering of all candi-
dates over all ballots for each race is used to generate the confirmation numbers.
That is, the permutation acts on ¢V values for a c-candidate race and N ballots,

ensuring distinct confirmation numbers on each ballot. The permutation is gen-
erated as for the PunchScan ballot, by first constructing as many pseudorandom
permutations as there are mixes, and then composing them into a single permu-
tation. The decryption is also similar thereafter; each mix applies the inverse of
the pseudorandom permutation corresponding to the seed the mix obtains. The
seeds may not be distinct for distinct ballots.

4.2 Punchscanian mixnet

A punchscanian mixnet [13] has been viewed as an integral part of PunchScan
itself, however we describe how it may be used with other front-ends, after first
providing a brief overview. The path through a punchscanian mixnet is fixed a-
priori and commitments to it are published a priori; the paths and permutations
are pseudorandomly generated. The advantage of having pre-set paths is that
the onions do not have to be part of the payload anymore. The notion of an
onion gets degraded to a chaining of secret seeds, which are fixed along the
path. The payload becomes only the ballot itself, which carries the encrypted
selection of the voter. In a punchscanian mixnet Payload;, = (Ballot;) and
there is no relation between the degraded onions; that is, there is variable =
in the receipt. Because the paths are pre-committed to, and only the mixnet
knows the seeds, the mixnet itself produces the ballot (as opposed to the voting
machine producing the onions). In this setting, the mixnet is a single entity, and
not composed of several entities; however, this single entity may be split among
several using standard secret sharing approaches. Assuming that RPC is used to
audit the mixing, the single entity consists of two for the purposes of the audit
and hence:

Ballot; = F'(seed;1) @ F(seed;2)(Ballot;_1) (3)

where F is a public function. Having access to only one of the three elements in
the equation does not leak any information about the other two. The commit-
ments to the seeds can be independent, or can be blended into the commitments
to the paths. While traveling through the mixnet, the ballot is transformed ac-
cording to Eq. 2.

After the ballots are produced, they are publicly committed to. To ensure
that the produced ballots are consistent with the seeds used to generate them, a
significant fraction of the ballots are randomly chosen to be opened, and Eq. 3 is
checked for all of them. With high probability, the ballots that were not opened
are also consistent with the paths and the seeds actually used for the decryption.
The ballots that are opened need not be printed on paper. To ensure that the
ballots that survived the audit are printed correctly, another audit (called a
printing audit) has to be performed. If all the ballots are initially printed, then
the printing audit can be combined with the mixnet correctness audit.

Advantages and disadvantages The major advantage is the high efficiency.
Millions of ballots can be tallied in minutes. The disadvantages are the central

nature of the authority, and the need to know the details of the election before
setting it up.

We now describe the use of the punchscanian mixnet with the other front-
ends. The essential approach is to absorb the onions into the mixnet and to
precommit to both onions and paths. Hence the onions used for the onion mixnet
can also be used for the punchscanian mixnet, with two differences: the onions
will not be carried with the ballots, and using more than two mixes serves no
purpose.

Visual cryptography with punchscanian mixnets Two PunchScan mixnets
are constructed, one for each layer. For each layer of each vote, the pseudoran-
dom component contributed by each mix is committed to. along with the path
the ballot layer will travel. The voter’s choice of receipt determines the mixnet
that will be used to decrypt her vote. From the chosen layer, the pixels that are
generated pseudo-randomly are discarded and the other pixels are run through
the corresponding punchscanian mixnet.

Prét a Voter with punchscanian mixnets The onions of the Prét a Voter
ballot are committed to along with the path the ballot will take, at the mixnet.
The onion is not part of the payload.

Scantegrity with punchscanian mixnets The same procedure is followed
as for Scantegrity with the onion mixnet, except that the onion is not carried
with the ballot, and is committed to in the appropriate mixes along with the
pre-computed path the ballot will take.

4.3 Pointer-based mixnets, or mixnets with no explicit group
operation

In its traditional form, the payload of the mix consisted of an onion and a ballot.
A first simplification step, as in the punchscanian mixnet, was to separate the
two, glue the onions to the mixnet and have only the ballot travel. A second step
is to remove the onion altogether. The onion does not vanish from a conceptual
perspective, but it is absorbed into the other operation that the mixnet is doing:
mixing. This is because both the shuffling and the decryption can be viewed as
permutations when the number of messages is small, and can be combined into
one essential permutation. Another way of viewing this is to consider the vote
for each candidate in a ballot (a mark or no mark) as a separate entity that
travels independently through the mixnet (as opposed to being part of a ballot
or a contest).

Let N be the number of ballots in an election and let ¢ be the number
of candidates on a ballot. Consider three tables: R (stands for receipt values)
contains coded votes; T (stands for tallies and results) contains clear text votes
that are countable by anyone; D (stands for decrypt) connects R with 7. R is a

matrix with IV rows and ¢ columns, each row represents a ballot. R is a matrix
with ¢ rows and N columns, each row represents a candidate. An element (3, j)
is either marked or not marked in R and 7', a mark corresponds to a vote for the
candidate. D is a blob with N X ¢ elements (the number of rows and columns is
irrelevant). Fig. 5 gives an example of the three tables for an election with six
ballots and two candidates.

Coded Votes Decrypt Results

Fig. 5. Pointer-based mixnet

The tables are connected by two permutations, m; and ms. 7 connects R
with D: Dy = Ry (x), where k is some canonical representation of (3, j); for
example, k = (¢ — 1)i + j. mz similarly connects D with T T}, = Dy,). These
permutations are constrained to return a mark for a particular candidate in R
to a mark for the same candidate in T

For two candidates, the properties of the permutation may be formalized as
follows: let w1 : [0,1,...,N x ¢ — 1] — [0,1,..., N x ¢ — 1] be bijective and let
2 : [0,1,...,N x ¢ —1] — [0,1,..., N x ¢ — 1] be bijective such that no two
elements belonging to the same ballot initially (in the same row in the initial
set) are mapped to two elements belonging to the same candidate (the same row
in the final set):

Vi, j,i # j having [i/c] = [j/c] = [ma(m1(2)) /b] # [m2(m1(5))/b] (4)

where [z] represents the greatest integer less than or equal to x. Note that no
group operation is performed (such as modulo addition or permutation composi-
tion). For ¢ > 2, the condition requires that the remainder on division by ¢ (the
candidate for a mark or nomark) be preserved; because the rows and columns
are reversed, one may then wish to view table T' canonically as listed column by
column, and R row by row.

The audit checks that one of the two properties hold: D; = Ry ;) or D; =
Tﬂ,l—l(i) and that the properties of the two permutations 7, and w9 hold; more
precisely it is statistically checked that both 7y and mo are injective functions
and that Eq. 4 holds. Because the voting system cannot predict which property
will be checks, a successful audit implies that both properties hold with high
probability.

Advantages and disadvantages The advantages of pointer mixnets are their
efficiency and the possibility of setting up the system before the details of the
election are known. Their disadvantage is the central nature of the authority.

Visual Crypto with Pointer mixnet In order to use the pointer mixnet with
the visual crypto front-end, one would need to treat each pixel as a candidate,
and the resulting system would be quite inefficient.

Prét a Voter with pointer mixnet Each candidate, and thus mark position,
is treated independently and its path and ending point in the table with the
clear votes are committed to, just as with Scantegrity.

PunchScan with pointer mixnet Each position that can be marked is treated
independently and its path and ending point in the clear vote table is committed
to, just as with Scantegrity.

Table 4.3 summarizes the advantages and disadvantages of the three types
of mixnet-based decryption mechanisms.

Onion mixnets Punchscanian |[Pointer mixnet
mixnet
Distributed authority |Yes No No
Paths Dynamic Static Static
Constructs the ballot [No Yes Yes
Efficiency Low High Medium
Lazy ballot style Yes No Yes
Cryptography used |[Symmetric and asym-|Commitments Commitments
metric encryption,
one way functions

Table 3. Properties of various mixnets

5 Conclusions

We have presented a unified view of four practical, end-to-end, voter-verifiable
voting systems that have been proposed recently as monolithic blocks. We present
a concrete separation between the way the ballot is presented and how the voters
interact with the system (the front-end) and the way the ballots are decrypted
and the tally is verified (the back-end). We present the properties of these front
and back-ends, and describe simple ways to combine them. This gives great flex-
ibility in the choice of a voting system for a particular jurisdiction that values
some properties more then others (e.g. privacy more then usability). Our work
opens a new way of looking at future voting systems, component-wise. Further

research can focus only on improving or changing a particular component of a
voting system (e.g. back-end), as long as it can interact with the other component
(e.g. front-end).

Acknowledgements

The authors would like to thank David Chaum, Jonathan Stanton, Aleks Esses,
Rick Carback and Jeremy Clark for inspiring discussion;the anonymous review-
ers, Geanina Popoveniuc, Gedare Bloom and Eugen Leontie for reviewing early
versions of this work.

References

1.

10.

11.

12.

B. Adida and R. L. Rivest. Scratch & Vote: self-contained paper-based crypto-
graphic voting. In WPES ’06: Proceedings of the 5th ACM workshop on Privacy
in electronic society, pages 29—40, New York, NY, USA, 2006. ACM Press.

D. Chaum. Private communications.

D. Chaum. U.S. patent 10348547 - Secret-ballot systems with voter-verifiable
integrity, 2003.

D. Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEFE Security
and Privacy, pages 38-47, January/February 2004.

D. Chaum. Recent results in electronic voting. In Presentation at Frontiers in
Electronic Elections (FEE 2005), Milan, Italy, September 2005. ECRYPT and ES-
ORICS.

D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest, P. Y. A.
Ryan, E. Shen, and A. T. Sherman. Scantegrity ii: End-to-end verifiability
for optical scan election systems using invisible ink confirmation codes. In
EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology on
USENIX/Accurate Electronic Voting Technology Workshop. USENIX Association,
2008.

D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. T. Sherman, and
P. Vora. Scantegrity: End-to-end voter verifiable optical-scan voting. IEEFE Security
and Privacy, May/June 2008.

D. Chaum, P. Y. A. Ryan, and S. Schneider. A practical voter-verifiable election
scheme. In In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter
Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in Computer Science,
pages 118—139. Springer, 2005.

D. L. Chaum. Untraceable electronic mail, return address, and digital pseudonym.
Communication of ACM, February 1981.

M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In Proceedings of the 11th USENIX Security
Symposium, pages 339-353, Berkeley, CA, USA, 2002. USENIX Association.

D. Lundin. Component based electronic voting systems. In IAVoSS Workshop On
Trustworthy Elections (WOTE 2007), University of Ottawa, Canada, June 2007.
M. Naor and A. Shamir. Visual cryptography. Lecture Notes in Computer Science
LNCS, 950:1-12, 1995.

13. S. Popoveniuc and B. Hosp. An introduction to PunchScan. In TAV0SS Workshop
On Trustworthy Elections (WOTE 2006), Robinson College, Cambridge UK, June
2006.

14. J. van de Graaf. Merging Prét a Voter and PunchScan. Cryptology ePrint Archive,
Report 2007/269, 2007. http://eprint.iacr.org/2007/269.pdf.

15. P. L. Vora. David Chaum’s voter verification using encrypted paper receipts, 2005.

