
Explaining the PunchScan voting system

Stefan Popoveniuc, Ben Hosp

George Washington University - CS Dept.
Washington DC 20052
{poste,bhosp}@gwu.edu

Abstract. PunchScan is a precinct-read optical-scan balloting system
that allows voters to take their ballot with them after scanning. This
does not violate the secret ballot principle because the ballots cannot
be read without secret information held by the distributed authority
in charge of the election. In fact, this election authority will publish the
ballots for everyone to see, allowing voters whose ballots were incorrectly
omitted to complain. PunchScan vote-counting is performed in private by
the election authority – who uses their secret information to decode the
ballots – but is verified in public by an auditor.In this paper we describe
how and why PunchScan works. We have kept most of the description at
an outline level so that it may be used as a straw model of a cryptographic
voting system.

1 Motivation

The accurate results of a democratic election are at the heart of any modern
society. Democracies are built throughout the world with the commitment to
have elected individuals representing the entire population of a nation. To be
able to record the wish of the people accurately we need to have a voting system
that is transparent, reliable and verifiable. We need to be able to prove that the
elections are run correctly, that every vote counts, and that the every person
going to the polls and exercising their right to vote can make a difference. At
the same time, we have to respect the secret nature of any vote. Linking a voter
to a vote should not be possible, with or without the complicity of the voter.

PunchScan is a novel voting system and extremely easy to use, both by the
voter and by the people running the elections. It is transparent and reliable, and
provides public verifiability, election integrity and enhanced voter privacy.

2 Key elements/Ideas

There are three key elements that make PunchScan work:

1. The ballot is made out of two separate pages. When the two pages are put
together, the resulting ballot reveals the choices of the voter. When only one
page is viewed, it gives no information – in the computational sense – about
what candidates the voter chose. Thus, if one page of the ballot is destroyed,
the voter can keep the other page, without violating ballot secrecy.

2. A mechanism allows the recovery of the candidate choices from only one
page of the ballot

3. The integrity of the election is provable through pre- and post-election audits.

These ideas are common both to PunchScan and to a previous method of David
Chaum’s [Cha]. However, PunchScan is more practical, because it does not suffer
from the perfect alignment problem of the previous method, because the cryp-
tography used is simpler, and because the time required to find the result and
obtain the integrity proof is smaller.

3 High-level system design

PunchScan achieves publicly verifiable integrity while maintaining a voter friendly
interface using an optical scan-like ballot. It gives each voter the opportunity to
take their vote home and check that it is counted in the final tally. In this sec-
tion, we first describe the ballot itself, then we present all the phases of the
voting process as seen by all the participants: voters, the election authority, and
candidates.

We assume that the candidates are auditing the election, since they are the
ones that should care most about a correct outcome; in particular, each candidate
would want to check that his rightful votes were not given to another candidate.

3.1 Ballot design

A ballot consists of two stacked sheets of paper. The top page of the ballot
has holes in it, and the information on the bottom page can be read through
the holes. Both pages also contain all the text needed on the ballot, such as
contests (i.e.: ballot questions) and the candidates’ names. On the top page,
every answer has a symbol assigned to it and the assignment of symbols to
answers varies from ballot to ballot. On the bottom page of the ballot, there is
an (apparently) unordered list of symbols and their order differs from ballot to
ballot. The top and the bottom ballot pages are aligned in such a way that when
they are overlaid, for every question on the ballot, the symbols from the bottom
page are visible through the holes made on the top page (see figure 1(a)).

In PunchScan, the voter uses a dauber to mark the selection of candidates.
A dauber is a pen that leaves a disk of ink on the paper when it makes contact,
just like the ones used by Bingo players to mark the numbers on their tickets.
The diameter of the ink disc is greater then the diameter of the hole punched
through the top page, which means the dauber leaves a mark on both the top
and bottom ballot pages. Figure 1(b) contains a ballot voted for ”Yes”.

Because the order of the symbols on the two pages of a ballot is different (and
independent), one cannot determine which mark is for which candidate by view-
ing only one page. We assume that the association of candidates with symbols
and the order of the symbols on the bottom page are uniformly random. Figure
1(c) has the right answer selected on the top layer; depending on which possible
bottom layer is this ballot’s actual bottom layer, that mark could represent a
vote for ”Yes” or a vote for ”No”, both with a probability of 50%.

(a) A sample ballot.
When the two pages are
overlayed, the symbols
on the bottom page are
visible through the holes.

(b) A voted ballot. If you
look at each layer individ-
ually, you cannot say that
the mark is for ”Yes” or
for ”No”.

(c) Given only one layer of
the ballot, the marks on that
layer are equally likely to
represent a vote for any can-
didate.

Fig. 1. PunchScan’s ballot

3.2 Chronological description

There are three phases of the voting process:

– the preelection phase (labeled B for Before)
– the election phase (labeled E for Election)
– the postelection phase (labeled A for After)

The preelection phase The preelection phase is preparatory and allows the
setup of the election and integrity proofs. During the preelection phase, the
ballots are generated, printed and audited. Also, the information that allows
recovering the choice from one page of the ballot is generated and checked. The
chronological order is the following:

B.1 The election authority generates ballots and commits to them.
B.2 The election authority generates and commits to the information necessary

for decrypting one page of the ballot when the other one is destroyed.
B.3 The candidates challenge the election authority and ask to see some of the

ballots (say half), along with the information from B.2.
B.4 The election authority provides the requested ballots, and opens the com-

mitments associated with them, thus spoiling them.
B.5 The candidates check to ensure that the commitments are consistent with

the opened ballots.

Election day On election day, the voters go to their assigned polling places,
authenticate themselves as legitimate voters, and get a ballot from the election
officials.

E.1 The voter is given a sealed ballot.
E.2 Without seeing the order of the symbols on either page, the voter commits

to the page that will be kept (e.g by making a special mark on the other
page).

E.3 The voter marks the hole that has the symbol associated with their favorite
candidates on the ballot.

E.4 The voter separates the two pages, destroys the unchosen one and keeps the
one chosen in [E.2].

E.5 The surviving page is scanned, and the positions of the marks are recorded
and made public. Henceforth, all references to “ballot” will refer to this
surviving page.

In an earlier version, the voter chose which page to keep after seeing and marking
their ballot. The early choice of the page to become a receipt is necessary to
prevent an attack described by John Kelsey.

The postelection phase After all the polls close, the election is audited and
proofs carried out to ensure the integrity of the election. The chronological order
of the events following an election is as follows:

A.1 Any voter can go to the election authority web site, enter a serial number
for her ballot, check that the ballot is there, and that it accurately resembles
the page she possesses.

A.2 The election authority processes all ballots to produce decrypted versions,
along with a partially decrypted form of all the ballots.

A.3 The candidates ask to see some of the transformations from the original
ballots to the partially-decrypted forms, and some of the transformation
from the partially-decrypted form to the clear form.

A.4 The election authority replies to the challenges made by the candidates in
[A.3].

A.5 The candidates check to see if the reply of the election authority is consistent
with the commitments made in the preelection phase [B.2] and with the
information made public in [A.2].

4 Description by roles

4.1 The voter

On Election Day, a voter comes to the assigned polling place and authenticates
herself as a legitimate voter. She gets a dauber and a ballot, and before seeing it,
commits to the page that she will keep. She enters a private voting booth. She
chooses her favorite candidates by making a mark with the dauber on the hole
that has the symbol associated with her favorite candidate. She then shreds the
unchosen page and keeps the other one. Then, she scans the kept page. She may
walk out of the polling place with this page, which serves as her (encrypted)
receipt. Later, she can go to a web site, type in the serial number of her ballot,
and check that the ballot is there. No other checks are required from the voter.

4.2 The election authority

In the preelection phase, the election authority decides the format of a canonical
ballot. This is the one from which all the other ballot variants will be generated.
Also, the canonical ballot is used to recover the choices of the voters, after one
page of the ballot has been destroyed.

The election authority generates at least twice the number of ballots needed
in the election, and commits to them (making the commitment public; the bal-
lots themselves remain secret). It also generates and commits to information
necessary to recover the intent of a voter from one page of the ballot.

In response to the preelection challenge [B.3], the election authority discloses
all the information about half (or a significant fraction) of the ballots (thus
spoiling them). This allows the candidates to check the commitments and ensures
(with high probability) that all the ballots have been correctly generated.

After the election, the election authority posts partially decrypted ballots and
cleartext ballots. To prove that both decryptions (partial and final) were done
correctly, for each vote the election authority will reveal either how it transformed
the voted ballot into a partially decrypted one, or how it transformed a partial
decrypted ballot into a cleartext one, but not both for the same ballot. The
auditors choose which part will be revealed, and the chances of a cheating election
authority being detected grow exponentially with the number of votes cheated
on.

4.3 The candidates

We assume that the candidates are competing in an election. Because of this, we
can safely allow the candidates also to play the role of auditors. As auditors, the
candidates challenge the election authority during preelection and postelection
and check that the replies are consistent with the commitments.

5 An Example

We describe a minimal example: the election consists of a single binary con-
test; the voters vote “Yes” or “No”. The election authority decides that, in the
canonical ballot, the symbol “a” is associated with “Yes” and the symbol “b”
with “No” on the top page. The election authority also decides that the order
is “a” “b” on the bottom page. The canonical ballot is presented in figure 2(a).
The election authority defines what is a shift of one from the canonical form on
top and bottom pages. The canonical ballot corresponds to a shift of 0 (call it
a non-flipped ballot) and the non-canonical ballot corresponds to a shift of one
(call it a flipped ballot). Figure 3(a) contains all the possible top and bottom
pages. Any top page can be combined with any bottom page to produce a ballot
as seen in Figure 3(b). The four types of ballots are equally likely.

A non-flipped top page combined with a flipped bottom page results in a
flipped ballot. All the possibilities are in table 1. Note that we are only interested
in knowing if the entire ballot is flipped or not, not individual pages.

Fig. 2. The canonical ballot for a Yes/No contest

(a) All possible pages of a Yes/No ballot (b) All possible ballots contain-
ing Yes/No contest

Fig. 3. PunchScan’s ballot

To decrypt one page of the ballot, it is necessary to know if it came from a
flipped or non-flipped ballot, to know if it should be flipped or not to get the
canonical ballot. In PunchScan, this information is split into two flip/non-flip
operations (flip1 and flip2) for each ballot. When combined, these operations
transform the ballot page to the canonical ballot. The information is split so
that one half can be made public for auditing purposes. The relation that has
to hold between the pages of the ballot and the information used for recovering
is: top ⊕ bottom = flip1 ⊕ flip2.

⊕ Non Flipped Flipped

Non Flipped Non Flipped Flipped

Flipped Flipped Non Flipped

Table 1. Flipped / Non Flipped logic

The election authority makes public commitments to the ballots and to flip1
and flip2. The candidates choose half the ballots at random and the election
authority makes public the requested ballots along with the flip1 and flip2 for
each ballot. Anyone can check that the equation top ⊕ bottom = flip1 ⊕ flip2
holds. Only the ballots that were not made public in this phase (pre election)
will be further used in the election.

During the election phase, the election authority publishes all the marked
pages (half ballots) as voted on by voters. After the election, it publishes the
intermediary state of the ballots (ballots ⊕ flip1) and the decrypted ballots
(ballots ⊕ flip1 ⊕ flip2). These are commitments to the values of flip1 and flip2
used in the decryption of the voted half ballots.

During the postelection phase, the election authority is asked to open either
flip1 or flip2 but not both, since opening both would allow the linking of a voted
ballot to the corresponding decrypted one. Also, it is necessary that the partially-
decrypted ballots and the decrypted ones be in a random order (distinct from
each other and from the order of the voted ballots).

The election authority defines the following tables:

– P (for Print)
– D (for Decrypt)
– R (for Results)

The P table is indexed by ballot serial number and contains the top page
(P1), bottom page (P2), and space for the filled-in vote (to be entered after the
election). It also contains commitments to P1 and P2.

The D table contains the first (D2) and second (D4) mark permutations
(flips), the partially-decrypted vote (D3) to be filled in during decryption, and
information to connect it with the P table (D1) and the R table (D5). It also
contains a commitment for each row of D, as well as a commitment for columns
D1 and D2, and another commitment for columns D4 and D5.

The R table contains the cleartext votes (after postelection decryption).
For example, consider an election with six votes. The clear data in all the

tables is in Table 2. (No single person will ever see all of this information.)
Before the election, but after the election authority has made the commitments,
the tables look as they do in Table 3.

The candidates challenge the election authority to open a random half of the
ballots, say the ones numbered 2, 4 and 5. The election authority reveals the
requested information, and the tables look as they do in Table 4. Ballots 2, 4,
and 5 now cannot be used in the election and are excluded from any further
representation of the tables (see Table 5).

Assume that the voters mark their ballots as follows: on ballot 1, the left
mark is marked, and the top page is chosen; on ballot 3, the right mark and the
bottom page are chosen; on ballot 6, the left mark and the top page are chosen.
Because the canonical ballot is “ab”,“ab” (that is, “ab” on both pages), left
is associated with “a”, and right with “b”. The voters’ choices eventually end
up in P3, and when they do, each row describes what can be learned through
knowledge of the ballot page chosen by the voter.

The election authority performs the first flip to ballots 1,3 and 6 to obtain the
partially decrypted ballots as in D3, and the totally decrypted ballots as in R1

(see Table 6). The ballots in both D and R are shuffled independently, so it is not
possible to link rows among tables P , R and D. During the postelection phase,
the auditor asks the election authority to open either the left or the right side of
D (but not both). If the election authority cheats, the auditor will catch it with
probability 0.5 (for a higher probability see section 6.4). In our example, suppose
the auditor chooses the right side. The election authority then reveals D4 and
D5. The auditor can now check that D3 ⊕D4 = R1, and that the commitment
CD4,5 to the columns D4 and D5 is valid.

Ballot ID P1 P2 P3 CP1 CP2

1 ab ab C1,1 C1,2

2 ab ba C2,1 C2,2

3 ba ab C3,1 C3,2

4 ba ba C4,1 C4,2

5 ab ba C5,1 C5,2

6 ba ab C6,1 C6,2

D1 D2 D3 D4 D5 DC

6 → ª 5 CA

5 ª → 4 CB

2 ª → 1 CC

1 ª ª 3 CD

4 → → 2 CE

3 → ª 6 CF

CD1,2 CD4,5

Rid R1

1

2

3

4

5

6

Table 2. PDR tables as the election authority sees them, with all the information
available. The tables are properly formed, because, for all the ballots, D2⊕D4 correctly
represents whether P2 is a flipped version of P1 or not. For example, for ballot number
3, on the top page, “a” is associated with “Yes”, and b with “No”. On the bottom
page, the order is “ba”, thus P2 is a flipped version of P1. In the D table, in the row
corresponding to 3, we have → ⊕ ª = flip. For ballot 1, C1,1 is a commitment to P1,
C1,2 is a commitment to P2 and so on.

Ballot ID P1 P2 P3 CP1 CP2

1 C1,1 C1,2

2 C2,1 C2,2

3 C3,1 C3,2

4 C4,1 C4,2

5 C5,1 C5,2

6 C6,1 C6,2

D1 D2 D3 D4 D5 DC

CA

CB

CC

CD

CE

CF

CD1,2 CD4,5

Table 3. PD tables in the preelection phase, as the public sees them.

Ballot ID P1 P2 P3 CP1 CP2

1 C1,1 C1,2

2 ab ba C2,1 C2,2

3 C3,1 C3,2

4 ba ba C4,1 C4,2

5 ab ba C5,1 C5,2

6 C6,1 C6,2

D1 D2 D3 D4 D5 DC

CA

5 ª → 4 CB

2 ª → 1 CC

CD

4 → → 2 CE

CF

CD1,2 CD4,5

Table 4. PD tables after the election authority has replied to the request to open
ballots 2, 4, and 5.

Ballot ID P1 P2 P3

1

3

6

D1 D2 D3 D4 D5

CD1,2 CD4,5

Table 5. Ballots that can be used by voters on election day. The other ballots were
spoiled during the preelection phase. The row commitments are not shown anymore
because they won’t be checked, since no other complete row will ever be opened.

Ballot ID P1 P2 P3

1 ab a

3 ab b

6 ba a

D1 D2 D3 D4 D5

a

b

b

CD1,2 CD4,5

Rid R1

3 a

5 b

6 a

Table 6. PDR snapshot after the polls close. One cannot say what row in the D table
corresponds to what row in the P or R table, because the rows are shuffled. Thus, the
secret ballot principle is satisfied.

Ballot ID P1 P2 P3

1 ab a

3 ab b

6 ba a

D1 D2 D3 D4 D5

a ª 5

b ª 3

b ª 6

CD1,2 CD4,5

Rid R1

3 a

5 b

6 a

Table 7. PDR snapshot after the postelection audit. The election authority was asked
to open the right side of the D table. Anyone can check that the partially decrypted
result transformed by D4 gives the result in R (D3⊕D4 = R), so the election authority
did not cheat. Also CD4,5, the commitment to D4 and D5, is checked. Note that there
is still no link between P and R, so privacy is maintained.

6 A more technical description

This section provides a more technical description of PunchScan.

6.1 The ballot

Let S be a set of symbols. The symbols in S will appear on both the top and
bottom page. We assume that S is sorted and the order is fixed. We denote by
“canonical ballot” a ballot that will have S printed in order on both the top
and bottom page. Let Tp (top permutation), Bp (bottom permutation), and D2

be three random, independent permutations of S (in an implementation, the
permutation would be pseudorandomly generated as described in section A).

Compute D4 such that BpoT
−1
p = D2oD4. Therefore, D4 = D−1

2 oBpoT
−1
p .

6.2 The tables

We describe the PDR tables using notation from relational algebra, a system
of notation heavily used in databases. It has the notions of relations (tables),
projections (π - SQL SELECT), selection (σ - SQL WHERE) and join (./).
A relation R(A,B), A → B means that A implies B (given A, B is uniquely
identified). A is called a key of relation R.

Let P (print) be the following relation:

P (Bid, P1, P2, P3, CP1, CP2), Bid → (P1, P2, P3, CP1, CP2)

where Bid is the ballot id (the serial number of the ballot), P1 is Tp, P2 is Bp,
P3 is a projection of BpoT

−1
p (voter choices), CP1 is a commitment to P1, and

CP2 is a commitment to P2. The commitments are cryptographic commitments
(see Section B.2 for details). P contains 2n records.

Let D (decrypt) be the following relation:

D(D1, D2, D3, D4, D5, DC), D1 → (D2, D3, D4, D5, DC)

where D1 is a foreign key pointing to the Bid attribute of P , D5 is a foreign
key pointing to the Rid attribute of R (see below),D2 and D4 are permutations
of S described above, D3 is P3oD2, and DC is a commitment to the tuple
(D1, D2, D4, D5). D contains 2n records.

Let CD (commitments to the columns of D) be the following relation:

CD(CD1,2, CD3,4)

This relation has only one record. CD1,2 is a commitment to D1 and D2; CD4,5

is a commitments to D4 and D5.
Let R (results) be the following relation:

R(Rid, R1), Rid → (R1)

where Rid is a unique identifier and R1 is P3oD2oD4. R contains 2n records.
To select all the information for a ballot, we write:

(P ./Bid=D1 D) ./D5=Rid
R

6.3 The timeline

Before the election the election authority computes P (Bid, P1, P2, CP1, CP2),
D(D1, D2, D4, D5, DC), CD(CD1,2, CD4,5) and makes public P (Bid, CP1, CP2),
D(DC) and CD(CD1,2, CD4,5).

In the preelection audit, the auditor randomly selects half of the records in
P . The election authority reveals P ./Bid=D1 D for all the requested records.
The auditor can check that BpoT

−1
p = D2oD4. and that the commitments CP1,

CP2, and DC are valid.
During the election, the voters fill in P3.
After the election, the election authority computes D3 = P3oD2 and R1 =

D3oD4 and makes D3 and R1 public.
In the postelection audit, the auditor asks the election authority to either

reveal (D1, D2) or (D4, D5), but not both. The election authority reveals the
requested information. The auditor can either check that P3oD2 = D3 (using
P ./Bid=D1 D) or D3oD4 = R1 (using D ./D5=Rid

R). The chance of the
election authority cheating and not being caught is 50% (see section 6.4). CD1,2

and CD4,5 are also checked.

6.4 Multiple instances of D

Because the election authority can cheat with 50% probability of success (i.e.,
nondetection), we introduce multiple instances of D. In other words, we modify
the relation D as follows: Let D (decrypt) be the following relation:

D(i,D1, D2, D3, D4, D5, DC), (i, D1) → (D2, D3, D4, D5, DC)

where i is the instance number and the rest is as described in Section 6.2
Let CD (commitments to the columns of D) be the following relation:

CD(i, CD1,2, CD3,4), i → (CD12 , CD3,4)

where i is a foreign key pointing to the i attribute of D.
In the postelection audit, we can now make k challenges, where k is the

number of D instances. The auditor will ask to open either (D1, D2) or (D4, D5)
for each instance of D. The chance that the election authority cheats successfully
is one out of 2k. We can make this probability arbitrarily small by increasing k.

6.5 Multiple-question Ballots

We have been implicitly assuming that there is only one question per ballot. The
situation becomes slightly more complicated if this is not the case. PunchScan
works just fine for multiple-question ballots but the decrypted ballots will pre-
serve the “cross-question” relationships: for example, if 90% of the people who
voted for Alice for Governor also voted for Bob for President, the results will
reflect this. However, PunchScan can be extended to hide these correlations if
desired.

Trivially, of course, if PunchScan works for one-question elections then we
can conduct an n-question election by giving each voter n one-question ballots. If
we want to preserve the cross-question relationship among two or more questions
(perhaps if someone voted “No” for a recall election then they are not allowed
to vote for a replacement candidate) then we could group those questions on the
same ballot. This would work but seems to us to be not as good (from a ballot
design, system overhead, and printing cost point of view) as the case when we
are using one ballot and running one election.

However, we can readily modify this scheme to fix this problem. Suppose we
are running n one-question elections. That is, each voter receives one ballot for
each of n elections and votes, then the votes are counted separately for each
election. In this situation, there is one P -table and one set of D-tables (and
associated R-table) for each of the n elections. Let us note that there is no
information contained in the D-tables for election A that can be used to decrypt
the ballots for election B. Since the shuffles for each election are also independent,
we do not need to obscure the link between voter x’s encrypted ballots in election
A and B, because when they are decrypted the shuffling will obscure the cross-
question relationship for us. In other words, we can print these ballots together,
on the same piece of paper, with the same serial number (and the same P -table
row), just as in the original scheme that reveals the correlations. Because the
ballots are decrypted separately, this does not provide any more information
regarding the cross-question relationships.

7 Proofs

This section contains proofs of some security properties of PunchScan.

7.1 Privacy

In this context, the maintenance of privacy requires that an observer’s probability
distribution of the contents of a given ballot i (i.e.: the value of voter i’s vote) be
unchanged by observation of the cryptographically-hidden data. In other words,

p(bi|PDR) = p(bi|R),

where bi is the value of ballot i, PDR is the entire publicly-observable ballot
data matrix, and R is the results column of that matrix.

Attacks on P The most straightforward way for an attacker to use the secret
parts of PDR to reveal the vote of voter i would be to simply decrypt P1,i

and P2,i and use those to decode P3,i. If the attacker is unable to break this
cryptography, then learning P would not affect his probability distribution on
bi. This cryptography can be made arbitrarily strong in order to protect privacy
at any desired level of computational security.

Attacks on D Another method would involve an attack on the shuffle; that
is, decrypting the unrevealed link between P and D (D1) or between D and R
(D5). However, the same cryptography is used to secure those columns of D, so
again, an attacker unable to break the cryptography could not learn anything
useful from D.

7.2 Integrity

There are four elements of the PunchScan process that are vulnerable to some
extent to manipulation of the vote tally by the election authority.

– The ballots may be improperly formed.
– The ballots may be improperly printed.
– The ballot markings may be improperly recorded.
– The marked ballots may be improperly decrypted.

Each of these vulnerabilities is addressed by an audit procedure.

7.3 First Audit

The first audit procedure ensures that the ballots are well-formed, meaning that
for each ballot, P1⊕P2 = D2⊕D4 for the row in each D-matrix associated with
that ballot. This involves spoiling some fraction of the ballots by unlocking this
secret data.

In general, suppose there are n ballots, the election authority has cheated by
malforming k of them, and f ballots are chosen at random to be examined. The
probability that the election authority gets away with this attack is the number
of possibilities where the auditor chooses only valid vote divided by the number
of all possible choices.

The number of all the possible choices is
(

f
n

)
(n choose f). The number

of ways to choose f valid ballots from a total of n ballots where k of then are

invalid, is
(

f
n− k

)
(choose f votes out of n− k that are valid). So the election

authority cheats successfully with the following probability:

p =

(
f
n− k

)

(
f
n

) =
(n−k)!

f !(n−k−f)!

n!
f !(n−f)!

=
(n−k)!

(n−k−f)!

n!
(n−f)!

Note that f + k < n, so that n − k − f > 0 and (n − k − f)! exists and is not
the special case 0!. If f + k > n then the probability is 0.

In the interest of simplicity, from here we may compute two upper bounds
on the chance that this attack will not be detected:

(n− k)!
n!

× (n− f)!
(n− k − f)!

=
(n− f)× (n− f − 1)× ...(n− f − k + 1)

n× (n− 1)× ...× (n− k + 1)

=
n− f

n
× n− f − 1

n− 1
× ...× n− f − k + 1

n− k + 1

= (1− f

n
)× (1− f

n− 1
)× ...× (1− f

n− k + 1
)

< (1− f

n
)
k

(n− k)!
(n− k − f)!

× (n− f)!
n!

=
(n− k)× (n− k − 1)× ...× (n− k − f + 1)

n× (n− 1)× ...× (n− f + 1)

=
n− k

n
× n− k − 1

n− 1
× ...× n− k − f + 1

n− f + 1

= (1− k

n
)× (1− k

n− 1
)× ...× (1− k

n− f + 1
)

< (1− k

n
)
f

Thus, our upper bound on the probability that the election authority gets
away with malforming k out of n ballots when f of those ballots are audited is
min[(1− f

n)k, (1− k
n)f].

7.4 Second Audit

In order to check that a given ballot receipt was properly printed, one can reen-
crypt it (that is, recompute the commitments) and compare it with the P -matrix.
Suppose n ballots remain unspoiled after the first audit, f are actually used by
voters who later check the commitments, and k of them are improperly printed.
Once again, the upper bound on the probability that none of the misprinted
ballots are detected is min[(1− f

n)k, (1− k
n)f].

7.5 Third Audit

In addition to checking that the ballot is correctly printed, one can also verify
that the recorded ballot mark matches the mark on the receipt. In effect, this
verifies the correctness of P3. Again, if n ballots remain unspoiled after the
first audit, f are actually used by voters who verify that their ballot marks
are correctly recorded online, and k ballots are incorrectly recorded, then the
upper bound on the probability that none of the incorrectly-recorded marks are
detected is min[(1− f

n)k, (1− k
n)f].

7.6 Fourth Audit

The election authority may influence the vote tally by incorrectly decrypting the
ballots. There are two methods we may use for auditing the election authority
to ensure that this does not occur.

Ballot-wise Auditing Suppose the auditor goes through a D-matrix ballot-
by-ballot (that is, row-by-row) and randomly chooses whether to inspect (open)
the “left” or “right” commitment for each ballot. This situation is different from
the first three audits because all ballots are inspected, but each inspection has
only a 1

2 chance of catching a modification. This makes the situation simpler;
the chance of k modified ballots all escaping detection is 2−k.

Table-wise Auditing On the other hand, the auditor may choose to open
all the “left” or “right” commitments for a given D-matrix. Assuming that the
election authority intends to cheat during the decryption and is aware of this,
he will put all his cheating in a given D-matrix in either the “left” or “right”
commitment, so that he has a 1

2 chance of escaping detection when that D-matrix
is inspected. If there are n D-matrices, then the chance of escaping detection if
any ballots are incorrectly decrypted is 2−n.

Comparison Both of these methods have desirable properties. The ballot-wise
method has the feature that the probability of detecting cheating is a function
of the number of ballots cheated on, and increases exponentially with a linear
increase in number of cheated ballots. The table-wise method has the feature
that the audit does not reduce the size of the anonymity set created by the
shuffle.

8 Related Work

Verifiable electronic voting has been introduced by David Chaum in 1981 [Cha81].
The first voter verifiable version used visual cryptography [CvdGRV07]. Peter
Ryan introduced the candidate permutation idea and developed an improved
ballot, much more usable and implementable in a voting system called Pret-
A-Voter [CRS05]. An early stage of PunchScan was analyzed by John Kelsey
[JK07] who came up with an attack based on the fact that the voter can see the
ballot and then decide which page to keep (see Section 3.2).

9 Appendix

A Permutations

PunchScan requires two types of permutations to be generated:

– row permutations
– mark permutations

Row permutations refer to the permutations of the rows of the D table and mark
permutation refer to the order in which the positions are associated with marks
on the ballot and to D2 and D4.

A.1 Row Permutations Generation

Consider an “unshuffled” D-matrix where D1 = [1, 2, . . . 2n], so row x of PDR
represents ballot x across the entire row, and D5 is blank. The election author-
ity should generate this matrix as the first step; call it δ. Generating the row
permutations will therefore take the form of the generation of D1 . . . DnD , where
Di denotes the ith shuffled D-matrix.

The D-matrices will be generated from δ as follows:

1. Randomly shuffle the rows of δ; call this D1.
2. Let D1

5 equal a random shuffling of {1, 2, . . . , 2n}.
3. For each i from 2, 3, . . . , 2n, let Di equal a random shuffling of the rows of

D1.

This involves nD +1 permutations of {1, 2, . . . , 2n}. It should be clear that if
(y, Di

1) = x and (y, Di
5) = z, then for all j, (y, Dj

1 = x) implies that (y,Dj
5) = z;

in other words, since each row of D1 contains a pointer to a (unique) row (ballot)
of P in D1 and a (unique) pointer to R in D5, reordering its rows does not change
the destination (in R) of any ballot in P .

A.2 Implementation

Permutation Algorithm We use the following permutation algorithm to
permute the unshuffled matrix. This algorithm generates a permutation π of
1, 2, . . . m, given as input m, some encryption function E, and some key K.

First, create a table with m rows and 2 columns. Populate column 1 of the
table with 1, 2, . . . m and column 2 of the table with EK(1), EK(2), . . . EK(m);
in other words, (i, 2) = EK((i, 1)) for every row i. Next, sort the table according
to column 2. Let π(i) = (i, 1); column 1 is now a permutation of 1, 2, . . . m.

If the key K were generated randomly, and the function E is a good encryp-
tion algorithm, then the permutation output by the algorithm will be random.
(That is, it will preserve any randomness in K.)

Application of the Algorithm The election authority can use this algorithm
to implement the D-matrix generation algorithm above as follows:

1. Generate a permutation πD1 of 1 . . . 2n. Let D1
1 = δ, sorted by πD1 ; that is,

row x of δ becomes row πD1(x) of D1.
2. Generate a permutation πR of 1 . . . 2n. Let D1

5 = πR.
3. For each i from 2 to nD, create Di by generating a permutation πDi of

1 . . . 2n. Let row y of D1 become row πDi(y) of Di.

A.3 Mark Permutations

The mark permutations, in contrast, are much simpler to generate. In order to
produce all possible associations of candidate names with ballot symbols, it is not
necessary to randomly permute both lists; it is only necessary to cyclically shift

both lists a (different) random amount. So to generate the mark permutations
for ballot x, where the ballot has c candidate names on the top page and c mark
symbols on the bottom page, the election authority only needs to generate two
random numbers between 1 and c, and record these numbers as P1 and P2 to
indicate the shift distance for the pages of ballot x.

Each D-matrix instance will require its own set of decrypting mark permu-
tations (columns D2 and D4). (It is for this reason that at least the decrypting
mark permutations must be performed after the row permutations.) For each
row of each Di, the election authority generates a random number between 1
and c, and records this number in Di

2. Di
4 is set such that the modular sum of

the ballot’s entries in P1 and P2 equals the sum of its entries in D2 and D4.

Random Number Generation The permutation algorithm described above
can also be used for the random number generation. The election authority can
compute a permutation π of 1, 2, . . . , c and use π(1) as the random number.

B Commitments

This section describes how the commitments in PunchScan are computed. We
use the comma (“,”) to represent the concatenation operation. There are two
secret AES 128-bit keys, MK1 and MK2, and a public 128-bit constant, C.

B.1 Computing AES keys

This section requires the use of two 128-bit AES keys. Given message M , let
M128 be the first 128 bits of M (if M is shorter then 128 bits, M will be padded
with trailing zeros); a random key SKm is generated as follows:

SKm = DMK1(C ⊕ EMK2(C ⊕ EMK1(M128)))

where ⊕ is the XOR operation and E and D are AES Encrypt and Decrypt
EBC NoPadding operations.

B.2 Commitment Algorithm

Given a message M , the commitment to M is computed as follows:

1. Generate a 128-bit AES key Km as described in Section B.1.
2. Encrypt the public constant C with Km, using AES 128-bit ECB NoPadding.

Let the result be SKm = AESKm(C). Note that SKm has 128 bits.
3. Concatenate M with SKm and hash everything using SHA256, resulting in

h1. So, h1 = SHA256(M, SKm).
4. Let h2 = SHA256(M, AESSKm(h1)), where the AES encryption is AES

128bit ECB PKCS#5Padding.
5. The commitment is h1, h2 (h1 concatenated with h2).

We now describe the computation of M for all the commitments needed in
PunchScan.

M for P1 M is obtained by concatenating the serial number of the ballot to a
constant particular to P1 and with the text on the top page of the ballot.
M = i,“P1”, P1 where i is a string representing the serial number of the ballot,
“P1” is a constant string (capital “P” concatenated with digit “1”) and P1 is
the string in P1 (the string representation of the top page).

M for P2 M is obtained by concatenating the serial number of the ballot to a
constant particular for P2 and with the text on the bottom page of the ballot.
M = i,“P2”, P2 where i is a string representing the serial number of the ballot,
“P2” is a constant string (capital “P” concatenated with digit “2”) and P2 is
the string in P2 (the string representation of the bottom page).

M for rows in D M is obtained by concatenating all the known values in
a row in D. The known values are: the pointer to the P table (D1), the first
mark permutation (D2), the second mark permutation (D4) and the link to the
R table (D5).
M = D1, D2, D4, D5, each Di being the string representation of a field in D.

M for columns in D M is obtained by concatenating all the values in the
first column and then concatenating all the values in the second column.
For the leftmost columns:
M = D1,1, D2,1, D3,1, . . . , Dn,1, D1,2, D2,2, D2,3 . . . Dn,2

For the right most columns:
M = D1,4, D2,4, D3,4, . . . , Dn,4, D1,5, D2,5, D2,5 . . . Dn,5

We only need to protect two 128-bit AES keys, MK1 and MK2, in order to
preserve the privacy of the system. The keys can be distributed and recreated
as needed, only when a certain threshold of the participants is present.

Note that the public cannot verify that the AES keys have been generated
in this way, or rather in some other way. Therefore, this system unfortunately
introduces a potential covert channel via the AES keys.

Acknowledgments

We would like to thank David Chaum, Poorvi Vora, Rick Carback, Jeremy Robin
and Ben Adida, for the vibrant discussions and insightful comments.

References

[Cha] David Chaum. Secret ballot receipts and transparent integrity - better
and less-costly electronic voting at polling places. http://www.vreceipt.
com/article.pdf.

[Cha81] David L. Chaum. Untraceable electronic mail, return address, and digital
pseudonym. Communication of ACM, February 1981.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical voter-
verifiable election scheme. In In Sabrina De Capitani di Vimercati, Paul
F. Syverson, and Dieter Gollmann, editors, ESORICS, volume 3679 of
Lecture Notes in Computer Science, pages 118–139. Springer, 2005.

[CvdGRV07] David Chaum, Jeroen van de Graaf, Peter Y. A. Ryan, and Poorvi L.
Vora. Secret ballot elections with unconditional integrity. Technical re-
port, IACR Eprint, 2007. http://eprint.iacr.org/ or http://www.

seas.gwu.edu/~poorvi/cgrv2007.pdf.
[JK07] Tal Moran David Chaum John Kelsey, Andrew Regenscheid.

Hacking paper some random attacks on paper based e2e systems.
http://kathrin.dagstuhl.de/files/Materials/07/07311/07311.KelseyJohn.Slides.pdf,
2007.

