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Abstract—We present a previously unknown vulnerability of
mix networks (mix nets) that use pseudorandom permutations
and that are audited with randomized partial checking (RPC).
Our method relies on two simple observations: A mix that gener-
ates pseudorandom permutations only generates a limited subset
of all possible permutations; in practical cases, RPC exposes
enough information to uniquely identify the mix’s permutation
because of the gap between the number of permutations that the
mix can generate and the total number of possible permutations.
Exploiting this newly found vulnerability is difficult in practice.
The only fix we see to this vulnerability is to maintain sufficient
entropy used while generating the permutation. We are not aware
of any applications using mix nets and RPC that can be exploited
with this vulnerability.

I. I NTRODUCTION

Mix networks (mix nets) were introduced in 1981 by David
Chaum [1] as one of the first constructions for protecting
privacy in the digital world. Since then, mix nets have been a
fertile ground for research in anonymous communications and
applications. Mix nets provide a foundation for schemes in
which privacy is of paramount importance, such as anonymous
message delivery and electronic voting. The role of a mix
net is to take a set of messages, or inputs, and (1) preserve
the information in the messages while (2) shuffling their
order to remove anylinks (correspondence between inputs and
outputs). In other words, given the set of inputs and an output
from the mix net, an adversary cannot identify the input from
which the output came (with probability greater than a uniform
random guess).

A mix net, or mix cascade, is a sequence of one or
more servers calledmixes. Each mix receives a batch of
inputs from the previous mix, permutes and masks the inputs,
and then sends the outputs to the next mix. Only the mix
should know the correspondence between the inputs and the
outputs. Data travels through the mix net serially, with each
mix performing similar operations. The length of the mix
net affects performance, reliability, and quality. More mixes
improve the quality and reliability of the mix net, but the cost
is reduced performance from replicating work.

The original mix nets, known as decryption mix nets
(onion mixes or Chaumian mixes), are based on public key
encryption. In this scheme, senders prepare an “onion” by
successively encrypting the message, and some randomness,
with the public keys of each mix in the order the mixes are
used. As the onion travels through the mix net, each mix

decrypts with its private key, removing one layer of encryption
and the added randomness. The onions can be permuted by
each mix sorting lexicographically the output decryptions, or
by applying a secret random permutation to the decryptions.

Re-encryption mix nets use a public key encryption scheme,
such as El Gamal, which allows re-encryption without knowl-
edge of the private key in order to modify one layer of en-
cryption. A message is sent through the mix net by encrypting
with the first mix’s public key and sending to that mix, which
re-encrypts the message for the next mix net. The last mix
in the mix net will decrypt to find the message. For a batch
of input encryptions, the output of the mix is a set of re-
encryptions, which are permuted by lexicographically sorting
after re-encrypting.

In verifiable electronic voting systems, a mix net is used to
de-correlate ballots from votes; that is, the inputs to the mix
net are encrypted ballots and the outputs after mixing are the
plaintext ballots. This system allows votes to be counted with-
out revealing any voter’s choice. In this situation, decryption
mix nets need to use secret random permutations, because the
client cannot be relied on to insert proper randomness in the
onion. In particular, the machine that constructs the onions
can choose the randomness so that the relative order of each
message is preserved (or trivial/known) after each decryption.
Re-encryption mix nets are still able to mix by sorting the
re-encryptions. For an attacker to link encrypted ballots with
plaintext ballots, the attacker must attack each mix’s public
key.

Recently, more specialized mix nets have been proposed,
such as Punchscanian mixes [2] and pointer-based mixes [3].
These mix nets are based on commitment functions that
might not be implemented using encryption, and therefore
can not directly be attacked to correlate inputs with outputs.
The commitments are hash outputs of mix information that
can be revealed during the auditing phase. Such a system
provides increased speed while mixing (no expensive public
key encryptions).

Checking, or auditing, the correctness of a mix net means
verifying that the input and output contain the same informa-
tion. Two common auditing methods exist: zero knowledge
proofs (ZKPs) [4] and randomized partial checking (RPC) [5].
Both methods are based on a challenge response mechanism
and verify each mix individually. ZKPs require the mix to
produce new information based on challenges, whereas RPC



utilizes a simple observation to use existing information:the
mixes are used serially, so some links for each mix can be
revealed, as long as there is no path of revealed links from
some input of the mix net to an output. RPC is faster than
ZKPs [5], and RPC does not rely on producing new data,
instead releasing data used in the mixing process.

Our work explores the possibility of finding all the links
for each mix audited using RPC. If all links for a single mix
can be found, then repeating the process for every mix will
eventually reveal all links for the entire mix net. Our findings
indicate that, when a mix’s permutation is pseudorandom, RPC
exposes much more than the links that are revealed explicitly.
We show that, after checking a mix with RPC, all links can
be accurately reconstructed such that the privacy guarantees of
the mix net are violated. To reconstruct the links in practice
currently requires more computational power than attacking
the public key that obscures the mix net.

Our approach reveals a restriction on the number of possible
permutations that can carry out the mixing operation, therefore
the vulnerability exists for any of the mix net schemes with
RPC applied. Throughout the rest of this paper, we focus on
decryption mixes and secret random permutations. However,
our analysis applies equally well to re-encryption mixes and
to the newer non public-key mixing schemes.

The contribution of this work is to raise the issue that
RPC plus the randomness used while mixing is a theoretical
weakness, regardless of the mix net scheme that is used. If
the mix net is a decryption mix net based on public keys,
exploiting the weakness might be less efficient than attacking
the public key encryption scheme. However, in re-encryption
mix nets, and also mix nets based on commitments, this attack
may offer a way for the attacker to find the entire permutation
with less work than conventional attacks. In other words, this
information leak provides a new attack vector for mix nets
that cannot be attacked directly. This result primarily impacts
designers of electronic voting systems, a number of which are
based on mix nets [2], [6], [7].

A. Related Work

Much of the previous work in this area focuses on the
relationship among multiple consecutive mixes in a mix net.
In original RPC, two mixes can be paired so that the revealed
outputs of the first are not revealed inputs of the second.
However, now an adversary knows the unrevealed inputs of
the first are the revealed outputs of the second, even if unable
to distinguish elements within the set; thus the privacy setis
cut in half for each pair of mixes. To fix this problem, Chaum
[8] uses RPC across four consecutive mixes, with the first two
mixes as before but the third mix reveals inputs corresponding
to half the outputs of the second mix, and the fourth mix
reveals only the unrevealed outputs of the third. Gomulkiewicz
et al. [9] provide formal analysis of the information loss
induced by Chaum’s scheme with respect to the probability
distribution that an input can be linked to an output. They
find the connection between the inputs and outputs of a mix
net are sufficiently random (assuming a good shuffle at each

mix) to have assurance that the mix net meets the privacy
demands of voting systems.

In our analysis, the way RPC is used with respect to
surrounding mixes is irrelevant. We focus on a single mix at a
time, and we are satisfied that half of all input-output pairsare
linked. In this sense, we ignore information from surrounding
mixes. We are unaware of other work that examines RPC from
this point of view.

B. Useful Definitions

A permutation is a bijective function π with domain
1, 2, ..., n equal to the co-domain, and is arandom permu-
tation if for input i, π(i) is selected uniformly at random
from the co-domain. The entire permutation is given by the
output sequence generated in order byπ(1), ..., π(n); each
distinct ordering of the output sequence represents a distinct
permutation. There are exactlyn! distinct permutations for
domain of sizen.

A permutationπ of objectsX = x1, x2, ..., xn is a reorder-
ing of the objects in which the object at input positioni (xi)
links to the object at output positionπ(i) (xπ(i)), that is xi

is moved to theπ(i)’th position. A set of links contains link
pairs ofxi andxπ(i). We say that a permutationP satisfiesa
setF of links if, for everyxi linked toxπ(i) in F , xi is linked
to xP (i). In other words, the links inF of π are duplicated in
P . For a setF , |F| denotes the size of the set.

Information entropy[10] is a measure of the uncertainty
(randomness) for a discrete random variable, and is calculated
using the set of probabilities for the values (outcomes) of the
variable. Formally, bit entropyH measures the uncertainty
(in bits) within a set of probabilitiesp1, p2, ..., pn and is
computed asH = −

∑n
i=1 pi log2(pi). If x is a random

variable that has valuesx1, x2, ..., xn occurring with proba-
bilities p(x1), p(x2), ..., p(xn), thenH(x) means the value of
H computed using the set of probabilities for each value ofx.
A fundamental example of bit entropy is that ifx has uniform
probability, thenH(x) = log2(n), and x has uncertainty of
log2(n) bits.

II. PERMUTATION GENERATION

Consider the problem, for a single mix, of creating a
permutation ofn objects received as input, where the mix
has access to at mostk bits of randomness. Ideally, the mix
would choose a permutation uniformly at random from the set
of all permutations, and an attempt to guess the permutation
chosen will be correct with probability1/(n!). Unfortunately,
this ideal situation is not practical.

To see the difficulty of achieving the ideal case, consider
the bit entropy (H) required to have uncertainty (randomness)
in the order ofn!. H can be computed directly under the
assumption that permutations are selected uniformly from aset
of cardinality n! as H = log2(

1
(1/n!) ) = log2(n!) bits. From

complexity theorylog2(n!) is in O(n log(n)), which we derive
with Stirling’s approximation, which gives an upper bound for



log2(n!):

log2(n!) ≈ log2

(√
2π ∗ n ∗ nn

en

)

=
1 + log2(π) + log2(n)

2
+ n(log2(n) − log2(e)) .

As n increases, the first term on the right approximates to
log2(n)/2, while the second term gets arbitrarily close to
n log2(n): The number of bits needed to select a permuta-
tion grows faster than the number of objects permuted. If
n = 210 = 1024, then a mix would require about 10240 bits
of randomness to select a random permutation. This may be
infeasible, especially asn is allowed to grow arbitrarily large.

Instead, systems that use mix nets make use of some form of
cryptographic, computationally secure, pseudorandom number
generator (PRNG). PRNGs are used to generate a sequence
of pseudorandom numbers from aseedof k bits. The PRNG
preserves the entropy of the seed while generating more thank
bits; of course, the sequence can never have more entropy than
the seed, because no other source of randomness is consulted
by the PRNG. Thus if a PRNG uses a seed of, for example,
128 bits, then the sequence of numbers generated also has only
128 bits of entropy, or randomness.

In re-encryption mix nets, each batch of inputs is re-
encrypted with some randomness (a seed) and then sorted to
produce a batch of mixed outputs. The seed and the mix’s
secret key determine the permutation. So the total entropyk
of the permutation is the sum of the entropy of the seed and
key.

In decryption mix nets, each layer of the onion is seeded
when the onion is created. However, as noted previously, in
electronic voting systems the onion’s preparer is a voting
maching that cannot be relied upon to insert true randomness.
Therefore, decryption mix nets in voting use secret random
permutations. The de facto standard for secret random per-
mutations is to encrypt inputs with a block cipher, sort the
encryptions, then decrypt and publish the outputs. Thus the
encryption is never observed, only the shuffling. The block
cipher’s key (for fixed input) determines the permutation, so
the total entropyk of the permutation is the entropy of the
block cipher key.

If the mix only has access tok bits of entropy to generate
a permutation, then any method used to select a random
permutation is limited tok bits. Any such method can be
equated to using a function that specifies a random lookup
into a table of permutations, where the function can select up
to 2k indices of the table. This fact generalizes our results to
any mix net scheme that uses pseudorandomness to create the
permutation.

III. A NALYSIS OF INFORMATION LEAK

A k-bit secret allows at most2k random permutations to be
specified, but there aren! permutations in total. The gap be-
tweenn! and2k is easily seen using Stirling’s approximation,
log2(n!) ≈ n log2(n). For anyn ≥ k,

n! ≈ 2n log
2
(n) ≥ (2k)log2

(k) > 2k,

and the difference increases asn grows arbitrarily large while
k is fixed. For example, a reasonable size might bek = 256,
and with as few asn = 64 objects,n! > 2k, son does not even
need to be as large ask for the gap to exist. In the remainder
of this section, we demonstrate an information leak exploiting
this inequality, and we discuss some ideas for reducing the
ability of an adversary to exploit the leak.

A. Mixing Method and Assumptions

An entity M generates a permutationπ of n objects for a
single mix using onek-bit secret, and some publicly available
parameters. At some point in time,M reveals a random subset
F of links from its inputs to the permuted outputs.|F| is
typically n/2, and the|F| pairs to reveal are chosen according
to the rules for auditing the mix. The distribution onπ is
assumed to be uniform, and in practice this assumption is
upheld by the cryptosystem used to generateπ.

A common method of explicitly generating a permutation
is to re-encrypt or decrypt the inputs and sort the outputs, as
initially proposed by Chaum [1]. However, to be able to sort a
vector ofn objects, each object being potentially large, all the
n objects must be kept in memory. Ifn is large, for example
n is the number of ballots cast in a large national election,
this becomes impractical. Thus implementers may choose to
derive the permutation in another way, for example by using
a public method that takesk bits as input, such as a PRNG.
Our analysis focuses on the latter situation, but would work
in either case.

Alternatively, the new types of mix nets based on com-
mitments [2], [3] do not use any public key encryption
mechanism. Such systems still derive their permutations in
a deterministic manner from a fixedk bits of entropy, and so
our analysis still applies. We consider these schemes as using
secret random permutations for mixing.

B. The Leak

The mix’s permutationπ is chosen uniformly at random
from a subset of2k permutations; we call this subsetpos,
for possible permutations. Figures 1a and 1b explore a simple
example withn = 4, k = 3, where we have grouped together
the permutations inpos; each dot corresponds to a distinct
permutation on then objects. Generating the entirepos set
corresponds with generating all of the dots of the inner set of
Figure 1a. Figure 1b leaves solid only the permutations that
satisfy a fixed setF of n/2 = 2 links. We can readily verify
that fixing two links leaves only two objects free to permute
with each other.

In a perfect world, revealing|F| links would leaven− |F|
links hidden, and there would be exactly(n− |F|)! permuta-
tions that satisfyF . However, we have established that there
are only2k permutations inpos.

Theorem 1 The expected number of permutations satisfying
a fixed subsetF ⊂ pos, where|pos| = 2k ≤ n!, is

N(k, n, |F|) = max

(

1, 2k ∗ (n − |F|)!
n!

)

. (1)
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Fig. 1: A small example withn = 4, k = 3 and permutations
in thepos (possible permutations) subset are grouped together.
Fig. (b) shows that(n/2)! = 2 of the 24 permutations satisfy
a set of links for exactlyn/2 = 2 positions.

Proof: N(k, n, |F|) includes a lower bound because there
is always at least 1 permutation (π) satisfyingF in pos.

The2k permutations inpos are uniformly distributed across
all n! permutations. Thus the ratio of permutations that satisfy
F within pos is equal to the ratio satisfyingF in the whole
set. Out of then! permutations, exactly(n − |F|)! satisfyF ,
so the ratio is(n−|F|)!

n! . This ratio is the same inpos, and
multiplying by |pos| yields equation 1.

Figure 1b demonstrates Equation 1 for a simple example,
and Figure 2 shows a logarithmic plot of the equation.

Equation 1 is simple, but does not readily lend itself
to analysis or intuitive comparisons. Again using Stirling’s
approximation and substituting|F| = n/f we find

2k ∗ (n − |F|)!
n!

= 2k+log
2
((n−n/f)!)−log

2
(n!)

≈ 2k+(n−n/f) log
2
(n−n/f)−n log

2
(n)

= 2k+(n−n/f) log
2
(1−1/f)−(n/f) log

2
(n),

which, for f = 2 (the common case of|F| = n/2), is

= 2k−(n/2)(1+log
2
(n)) .

If k < (n/2)(1 + log2(n)), then 2k ∗ (n−|F|)!
n! is less than

1 andN(k, n, |F|) = 1. From the plots in Figure 2, we see
that maintaining multiple permutations inpos satisfying F
requires more than linear growth ink with respect ton; this is
also obvious from the approximation, but was not immediately
obvious from Equation 1.

The probability that a permutationP ∈ pos satisfyingF
is π is 1 divided by the number of permutations inpos that
satisfyF . Also, for fixedk andn, as |F| increases Equation
1 decreases toward 1. Thus, revealing more links decreases
the number of permutations inpos that satisfy those links and
increases the probability that there is only one permutation in
pos that will satisfy the links.

C. Discussion

We do not know of any polynomial-time exploits, how-
ever we do provide an explanation for what an unbounded
adversary can do with knowledge of the information leak.
Suppose a computationally unbounded adversaryA mounts
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Fig. 2: Logarithm of Equation 1 for different values ofk from
64 to 512, and fork = log2(n!) as the ideal case. Each plot
represents a fixedk, and, when2k ≤ n!, there is linear decline
in each of the plots (fewer permutations inpos satisfying
F). Increasingk increases the number of permutations inpos
satisfyingF , but is dominated by the number of items being
permuted. This shows that the more objects that get permuted,
the greater amount of randomness is required to maintain ideal
anonymity.

a brute force attack by trying everyk-bit secret. By using all
2k possible secrets,A creates a table of all permutations in
pos. From the analysis above, the probability that exactly one
permutation inpos satisfiesF rapidly approaches 1. Therefore
A can determine the permutationπ chosen byM . Note that,
in the case of decryption mix nets at least, such an attacker
would have an easier job attacking the encryption keys used.
In a computationally bounded setting, exploiting this leakis
equivalent to cryptanalyzing state of the art cryptosystems, and
is not an immediate concern.

If an electronic voting system was exploitable through this
vulnerability, then the secrecy of the ballot would be violated.
Mix nets are used to provide anonymization of ballots, by
transforming encrypted ballots as inputs in to plaintext votes
as outputs. The encrypted ballots contain some identifying
information, which allows a voter to match their receipt with
the encrypted ballot and verify the ballot’s integrity. Themix
net iteratively shuffles and decrypts these ballots, until finally
the vote is revealed with no other identifying information;thus
a voter cannot give proof of a particular vote. However, if an
adversary is able to link the encrypted ballots with the plaintext
votes, the voter’s privacy is lost.

In systems that use RPC, if the PRNG is computationally
secure, then the information leak is not exploitable by a
computationally bound adversary. System designers can vary
the parameters of functionN , given in Equation 1, so that
everlasting privacy is guaranteed in an information theoretic
setting. For example, the plot shown in Figure 2 can be
generated for any|F| to find how much entropy (k) is



necessary for any given number ofn items to permute. We
also approximated Equation 1 in terms of|F| = n/f . This
approximation provides a reference point for making analyses
in situations different from the common case off = 2.
Using Stirling’s approximation provides an upper bound, so
the approximation is conservative and safe, if somewhat loose.

IV. CONCLUSION

We analyzed RPC for verifying the correctness of a mix
net and conclude that this particular method of correctness
checking may open the door to an attack that results in
linking the inputs with the outputs for the entire mix net.
Current approaches to generating permutations basically use
cryptographic PRNGs to extend a seed ofk bits to a longer
sequence with the same amount of entropy as the seed. This
limited randomness, when combined with RPC, theoretically
can allow an attacker to link all inputs and outputs of each
individual mix, leading to privacy loss for the mix net. To
provide information theoretic privacy, any pseudo-random
strategy should usen log2(n) truly random bits in the seed.
Existing cryptographic PRNGs make use of contemporary
block ciphers and hash functions, which provide sufficient
defense against modern attack methods.

In our analysis, exploiting the leak is currently impracti-
cal; however, the vulnerability exists and cryptanalysis might
make a computationally bound exploit possible. Given enough
computational power, a motivated attacker can apparently link
every input of a single mix to every output, without breaking
the public encryption key. This is a surprising result that is not
intuitive to current understanding of the effect of revealing mix
input-output pairs. For commitment based mix nets that use
RPC, this result provides an attack vector where none was
previously known to exist.

Our key result is that revealing half of the input-output
pairs of a permutation leads, with high probability, to exactly
one permutation with those pairs. Any application that reveals
links in a random permutation generated from a cryptographic
PRNG (for example, mix net-based electronic voting systems
audited using RPC) is relevant to our analysis. System de-
signers can avoid practical exploits of this vulnerabilityby
maintaining a cryptographically secure amount of randomness
used for deriving the permutation, so that attacking the mecha-
nism of permutation generation is as hard as breaking modern
cryptographic primitives.

We expect that most implementations are already secure
with respect to current computing power and computational
security of cryptographic PRNGs, but this vulnerability is
important to discuss and analyze further. Also of interest
would be examining the current techniques used for generating
permutations to determine if this theoretical vulnerability can
be exploited in a practical manner.
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