
An Introduction to Punchscan

Stefan Popoveniuc, Ben Hosp
George Washington University - CS Dept.

Washington DC 20052
{poste,bhosp}@gwu.edu

October 15, 2006

Abstract

Punchscan is a precinct-read optical-scan balloting system that allows voters to take their ballot with
them after scanning. This does not violate the secret ballot principle because the ballots cannot be read
without secret information held by the authority in charge of the election. In fact, this election authority
will publish the ballots for everyone to see, allowing voters whose ballots were incorrectly omitted to
complain. Punchscan vote-counting is performed in private by the Election Authority – who uses their
secret information to decode the ballots – but is verified in public by an auditor.

In this paper we describe how and why PunchScan works. We have kept most of the description at an
outline level so that it may be used as a straw model of a cryptographic voting system, and so that our
paper satisfies the page limits of VSRW06. Section 6 presents a summary of the technical details; for a full
technical paper about PunchScan, please refer to http://home.gwu.edu/˜bhosp/punchscan/article.pdf As
this full technical paper is not in review at any other venue, if the VSRW06 Technical Committee wishes,
this latter document may also be used at VSRW06.

1 Motivation

The accurate results of a democratic election are at the heart of any modern society. Democracies are built
throughout the world with the commitment to have elected individuals representing the entire population
of a nation. To be able to record the wish of the people accurately we need to have a voting system that is
transparent, reliable and verifiable. We need to be able to prove that the elections are run correctly, that
every vote counts, and that the every person going to the polls and exercising their right to vote can make
a difference. At the same time, we have to respect the secret nature of any vote. Linking a voter to a vote
should not be possible, with or without the complicity of the voter.

PunchScan is a novel voting system and extremely easy to use, both by the voter and by the people
running the elections. It is transparent and reliable, and provides public verifiability, election integrity and
enhanced voter privacy.

2 Key elements/Ideas

There are two key elements that make PunchScan work:

1. The ballot is made out of two separate pages. When the two pages are put together, the resulting
ballot reveals the choices of the voter. When only one page is viewed, it gives no information – in
the computational sense – about what candidates the voter chose. Thus, if one page of the ballot is
destroyed, the voter can keep the other page, without violating ballot secrecy.

2. A mechanism that allows the recovery of the candidate choices from only one page of the ballot

3. A proof of the integrity of the election, through pre and post election audits.

1

(a) A sample ballot. When the two
pages are overlayed, the symbols on
the bottom page are visible through
the holes.

(b) A voted ballot. If you look at
each layer individually, you cannot
say that the mark is for ”Yes” or for
”No”.

(c) Given only one layer of the ballot, the
marks on that layer are equally likely to
represent a vote for any candidate.

Figure 1: PunchScan’s ballot

These ideas are common both to PunchScan, and to a previous method of David Chaum’s [?]. However,
PunchScan is more practical, because it does not suffer from the perfect alignment problem of the previous
method, because the cryptography used is simpler, and because the time required to find the result and
obtain the integrity proof is smaller.

3 High-level system design

PunchScan achieves publicly verifiable integrity by a simple blend of paper voting and optical scan. It gives
each voter the opportunity to take their vote home and check that it is counted in the final tally. In this
section, we first describe the ballot itself, then we present all the phases of the voting process as seen by all
the participants: voters, the election authority, and candidates.

We assume that the candidates are auditing the election, since they are the ones that should care most
about a correct outcome; in particular, each candidate would want to check that his rightful votes were not
given to another candidate.

3.1 Ballot design

A ballot consists of a single sheet of paper, transversally folded in half to form two pages. The top page
of the ballot has holes in it, and the information on the bottom page can be read through the holes. The
top page also contains all the text needed on the ballot, such as contests (i.e.: ballot questions) and the
candidates’ names. Every answer has a symbol assigned to it and the assignment of symbols to answers
varies from ballot to ballot. On the bottom page of the ballot, there is an (apparently) unordered list of
symbols and their order differs from ballot to ballot. The top and the bottom ballot pages are aligned in
such a way that when they are overlaid, for every question on the ballot, the symbols from the bottom page
are visible through the holes made on the top page (see figure 1(a)).

In PunchScan, the voter uses a dauber to mark the selection of candidates. A dauber is a pen that
leaves a disk of ink on the paper when it makes contact, just like the ones used by Bingo players to mark
the numbers on their tickets. The diameter of the ink disc is greater then the diameter of the hole punched
through the top page, which means the dauber leaves a mark on both the top and bottom ballot pages.
Figure 1(b) contains a ballot voted for ”Yes”.

Because the order of the symbols on the two pages of a ballot is different (and independent), one cannot
determine which mark is for which candidate by viewing only one page. We assume that the association of
candidates with symbols and the order of the symbols on the bottom page are uniformly random. Figure
1(c) has the right answer selected on the top layer; depending on which possible bottom layer is this ballot’s

2

actual bottom layer, that mark could represent a vote for ”Yes” or a vote for ”No”, both with a probability
of 50%.

3.2 Chronological description

There are three phases of the voting:

� the preelection phase (labeled B for Before)

� the election day (labeled E for Election)

� the post election phase (labeled A for After)

3.2.1 The preelection phase

The preelection phase is a preparatory one, allowing the setup of the election and allowing integrity proofs
to be carried out. During the preelection phase, the ballots are generated, printed and audited. Also, the
information that allows recovering the choice from one page of the ballot is generated and checked. The
chronological order is the following:

B.1 The election authority generates ballots and commits to them.

B.2 The election authority generates and commits to the information necessary for decrypting one page of
the ballot when the other one is destroyed.

B.3 The candidates challenge the election authority and ask to see some of the ballots (say half), along
with the information from B.2.

B.4 The election authority provides the requested ballots, and opens the commitments associated with
them, thus spoiling them.

B.5 The candidates check to ensure that the commitments are consistent with the opened ballots.

3.2.2 Election day

On election day, the voters go to their assigned polling places, authenticate themselves as legitimate voters,
and get a ballot from the election officials.

E.1 The voter choose either the top or bottom page of her two-page ballot, and informs pollworkers of her
choice.

E.2 In a private voting booth, the voter marks her favorite candidates on the ballot.

E.3 The voter separates the two pages of the ballot. The chosen page from E.1 is scanned and recorded as
a cast ballot (all future references to “ballot” will refer to this surviving page), and the other page is
destroyed.

E.4 The voter can now take the scanned page home; it is her reciept. It cannot be used by the voter to
convince anyone of how she voted, but she can check to make sure that her ballot is eventually counted.

Note that because the voter must commit to a choice of ballot layer before voting, several problems common
to paper-ballot based voting systems (such as chain voting) are prevented.

3

3.2.3 The post election phase

After all the polls close, the election is audited and proofs carried out to ensure the integrity of the election.
The chronological order of the events following an election is as follows:

A.1 Any voter can go to the election authority web site, enter a serial number for her ballot, check that
the ballot is there and that it accurately resembles the page she possesses.

A.2 The election authority processes all ballots to produce decrypted versions, along with an intermediary
(partially decrypted) form of all the ballots

A.3 The candidates ask to see some of the transformations from the original ballots to the intermediary
forms, and some of the transformation from the intermediary form to the clear form.

A.4 The election authority replies to the challenges made by the candidates in A.3

A.5 The candidates check to see if the reply of the election authority is consistent with the commitments
made in the preelection phase [B.2], and with the information made public in [A.2].

4 Description by roles

4.1 The voter

On Election Day, the voter comes to the assigned polling place and authenticates herself as a legitimate
voter. She gets a ballot and a dauber and enters a private polling booth. She chooses her favorite candidates
by making a mark with the dauber on the symbol associated with the candidate. She then shreds one of the
pages of the ballot, and keeps the other one. Then, she scans this page. She may walk out of the polling
place with this page, which serves as her (encrypted) receipt. Later, she can go to a web site, type in the
serial number of her ballot and check that the ballot is there. No other checks are required from the voter.

4.2 The election authority (EA)

In the preelection phase, EA decides the format of a canonical ballot. This is the one from which all the
other ballot variants will be generated. Also, the canonical ballot is used to recover the choices of the voters,
after one page of the ballot has been destroyed.

EA generates at least twice the number of ballots needed in the election, and commits to them (making
the commitment public; the ballots themselves remain secret). It also generates and commits to information
necessary to recover the intent of a voter from one page of the ballot.

In response to the preelection challenge, [B.3], EA discloses all the information about half of the bal-
lots (thus spoiling them). This allows the candidates to check the commitments and ensures, with high
probability, that all the ballots have been correctly generated.

After the election, EA posts partially decrypted ballots and clear text ballots. To prove that the de-
cryption (the partial one and the final one) was done correctly, for each vote EA will reveal either how it
transformed the voted ballot into a partially decrypted one, or how it transformed a partial decrypted ballot
into a clear text one, but not both for the same ballot. The auditors choose which part will be revealed, and
the chances of a cheating EA being detected grow exponentially with the number of votes cheated on.

4.3 The candidates

We assume that the candidates are competing in an election. Because of this, we can safely allow the
candidates also to play the role of auditors. As auditors, the candidates challenge EA during preelection and
post election and check that the replies are consistent with the commitments.

4

⊕ Non Flipped Flipped
Non Flipped Non Flipped Flipped

Flipped Flipped Non Flipped

Table 1: Flipped / Non Flipped logic

5 An Example

We describe a minimal example: the election consists of a single binary contest; the voters vote “Yes” or
“No”. The EA decides that, in the canonical ballot, the symbol “a” is associated with “Yes” and the symbol
“b” with “No” on the top page. The EA also decides that the order is “a” “b” on the bottom page. The
canonical ballot is presented in figure 2(a). The EA defines what is a shift of one from the canonical form
on top and bottom pages. The canonical ballot corresponds to a shift of 0 (call it a non-flipped ballot) and
the non-canonical ballot corresponds to a shift of one (call it a flipped ballot). Figure 3(a) contains all the
possible top and bottom pages. Any top page can be combined with any bottom page to give out a ballot
as seen in figure 3(b). The four types of ballots are equally likely.

Figure 2: The canonical ballot on a Yes/No contest

(a) All possible pages of a Yes/No ballot (b) All possible ballots containing
Yes/No contest

Figure 3: PunchScan’s ballot

A non-flipped top page combined with a flipped bottom page results in a flipped ballot. All the possi-
bilities are in table 1. Note that we are only interested in knowing if the entire ballot is flipped or not, not
individual pages.

To decrypt one page of the ballot, it is necessary to know if it came from a flipped or non-flipped ballot,
to know if it should be flipped or not to get the canonical ballot. In Punchscan, this information is split
into two flip/non-flip operations (flip1 and flip2) for each ballot. These operations, combined, will take the
ballot page to the canonical ballot. The information is split so that one half of the split information can be

5

made public for auditing purposes. The relation that has to hold between the pages of the ballot and the
information used for recovering is: top + bottom = flip1 + flip2.

The EA makes public commitments to the ballots and to flip1 and flip2. The candidates choose half the
ballots at random and the election authority makes public the requested ballots along with the flip1 and
flip2 for each ballot. Anyone can check that the equation top + bottom = flip1 + flip2 holds. Only the
ballots that were not made public in this phase (pre election) will be further used in the election.

During the election phase, the EA publishes all the marked pages (half ballots) as voted on by voters.
After the election, it publishes the intermediary state of the ballots (ballots + flip1) and the decrypted ballots
(ballots + flip1 + flip2). These are commitments to the values of flip1 and flip2 used in the decryption of
the voted half ballots.

Post election, the EA is asked to open either flip1 or flip2, but not both, since opening both would allow
the linking of a voted ballot to the corresponding decrypted one. Also, it is necessary that the intermediary
state ballots and the decrypted ones be in a random order (distinct from the order of the voted ballots).

The election authority defines the following tables:

� P (for Print)

� D (for Decrypt)

� R (for Results)

The P table is indexed by ballot serial number and contains the top page (P1), bottom page (P2), and
space for the filled-in vote (to be entered after the election). It also contains commitments to P1 and P2.

The D table contains the first (D2) and second (D4) mark permutations (flips), the intermediary vote
(D3) to be filled in during decryption, and information to connect it with the P table (D1) and the R table
(D5). It also contains a commitment for each row of D, as well as a commitment for columns D1 and D2,
and another commitment for columns D4 and D5.

The R table contains the clear text votes (after post-election decryption).
Consider further, for the purposes of illustration, an election with only six votes. The clear data in all

the tables is in table 2. Before the election, but after the EA made the commitments, the tables look as in
table 3

The candidates challenge the election authority to open a random half of the ballots, say the ones
numbered 2, 4 and 5. The EA reveals the requested information, and the tables look as in table 4 Ballots
2,4 and 5 cannot be used in the election and are excluded from any further representation of the tables (see
table 7).

Assume that the choices of the voters are as follows. On ballot 1, the leftmost mark was marked, and
the top page was chosen. On ballot 3, the rightmost mark and the bottom page were chosen, and on ballot
6, the leftmost mark and the top page were chosen. Because the canonical ballot is “ab”,“ab” (that is, “ab”
on top and bottom pages), left is associated with “a”, and right with “b”. The voter choices eventually end
up in P3, and when they do, each row describes what can be learned through knowledge of the ballot page
chosen by the voter.

The EA performs the first flip to ballots 1,3 and 6 to obtain the partially decrypted ballots as in D3,
and the totally decrypted ballots as in R1 (see table 6). The ballots is both D and R are shuffled, so it is
not possible to link rows among Tables P , R and D. Post election, the auditor asks the EA to open either
the left or the right side of D (but not both). If the election authority cheats, the auditor will catch it with
probability 0.5 (for a higher probability see section ??). In our example, suppose the auditor chooses the
right hand side. The EA then reveals D4 and D5. The auditor can now check that D3 + D4 = R1, and that
the commitment CD4,5 to the columns D4 and D5 is valid.

6 A more technical description

This section provides a more technical description of PunchScan.

6

Ballot ID P1 P2 P3 CP1 CP2

1 ab ab C1,1 C1,2

2 ab ba C2,1 C2,2

3 ba ab C3,1 C3,2

4 ba ba C4,1 C4,2

5 ab ba C5,1 C5,2

6 ba ab C6,1 C6,2

D1 D2 D3 D4 D5 DC
6 → ª 5 CA

5 ª → 4 CB

2 ª → 1 CC

1 ª ª 3 CD

4 → → 2 CE

3 → ª 6 CF

CD1,2 CD4,5

Rid R1

1
2
3
4
5
6

Table 2: PDR tables as the Election Authority sees them, with all the information available. The tables are
properly formed, because, for all the ballots, D2 + D4 correctly represents whether P2 is a flipped version
of P1 or not. For example, for ballot number 3, on the top page, “a” is associated with “Yes”, and b with
“No”. On the bottom page, the order is “ba”, thus P2 is a flipped version of P1. In the D table, in the row
corresponding to 3, we have → + ª = flip. For ballot 1, C1,1 is a commitment to P1, C1,2 is a commitment
to P2 and so on.

Ballot ID P1 P2 P3 CP1 CP2

1 C1,1 C1,2

2 C2,1 C2,2

3 C3,1 C3,2

4 C4,1 C4,2

5 C5,1 C5,2

6 C6,1 C6,2

D1 D2 D3 D4 D5 DC
CA

CB

CC

CD

CE

CF

CD1,2 CD4,5

Table 3: PD tables in the Preelection phase, as the public sees them.

Ballot ID P1 P2 P3 CP1 CP2

1 C1,1 C1,2

2 ab ba C2,1 C2,2

3 C3,1 C3,2

4 ba ba C4,1 C4,2

5 ab ba C5,1 C5,2

6 C6,1 C6,2

D1 D2 D3 D4 D5 DC
CA

5 ª → 4 CB

2 ª → 1 CC

CD

4 → → 2 CE

CF

CD1,2 CD4,5

Table 4: PD tables after the election authority has replied to the request to open ballots 2,4 and 5

Ballot ID P1 P2 P3

1
3
6

D1 D2 D3 D4 D5

CD1,2 CD4,5

Table 5: Ballots that can be used by voters in the election day. The other ballots were spoiled during the
pre election phase. The row commitments are not shown anymore because they won’t be checked, since no
other complete row will ever be opened.

7

Ballot ID P1 P2 P3

1 ab a
3 ab b
6 ba a

D1 D2 D3 D4 D5

a
b
b

CD1,2 CD4,5

Rid R1

3 a
5 b
6 a

Table 6: PDR snapshot after the polls close. One cannot say what row in the D table corresponds to what
row in the P or R table, because the rows are permuted. Thus, the secret ballot principle is satisfied.

Ballot ID P1 P2 P3

1 ab a
3 ab b
6 ba a

D1 D2 D3 D4 D5

a ª 5
b ª 3
b ª 6

CD1,2 CD4,5

Rid R1

3 a
5 b
6 a

Table 7: PDR snapshot after the post election audit. The election authority was asked to open the right
hand side of the D table. Anyone can check that the intermediary result transformed by D4 gives the result
in R4 (D3 + D4 = R), thus the election authority did not cheat. Also CD4,5, the commitment to D4 and
D5 is checked. Note that there is still no link between P and R, thus the privacy

6.1 The ballot

Let S be a set of symbols. The symbols in S will appear on both the top and bottom page. We assume
that S is sorted and the order is fixed. We denote by “canonical ballot” a ballot that will have S (ordered)
on both the top and bottom page. Let Tp (top permutation), Bp (bottom permutation), and D2 be three
random, independent permutations of S (in an implementation, the permutation would be pseudorandomly
generated as described in section 8).

Compute D4 such that TpoBpoD2oD4 = I (the composition of the four permutations is the identity
permutation). Therefore, D4 = D−1

2 oB−1
p oT−1

p .

6.2 The tables

We describe the PDR tables using notation from relational algebra. In databases relational algebra is heavily
used. It has the notions of relations (tables), projections (π - SQL SELECT), selection (σ - SQL WHERE)
and join (./). In a relation R(A,B), A → B means that A implies B (given A, B is uniquely identified). A
is called a key of relation R.

Let P (print) be the following relation:

P (Bid, P1, P2, P3, CP1, CP2), Bid → (P1, P2, P3, CP1, CP2)

where Bid is the ballot id (the serial number of the ballot), P1 is Tp, P2 is Bp, P3 is a projection of TpoBp

(voter choices), CP1 is a commitment to P1, and CP2 is a commitment to P2. The commitments are
cryptographic commitments (see section 9.2 for details). P contains 2n records.

Let D (decrypt) be the following relation:

D(D1, D2, D3, D4, D5, DC), D1 → (D2, D3, D4, D5, DC)

where D1 is a foreign key pointing to the Bid attribute of P , D5 is a foreign key pointing to the Rid attribute
of R (see below),D2 and D4 are permutations of S described above, D3 is P3oD2, and DC is a commitment
to the tuple (D1, D2, D4, D5). D contains 2n records.

Let CD (commitments to the columns of D) be the following relation:

CD(CD1,2, CD3,4)

8

This relation has only one record. CD1,2 is a commitment to D1 and D2; CD4,5 is a commitments to D4

and D5.
Let R (results) be the following relation:

R(Rid, R1), Rid → (R1)

where Rid is a unique identifier and R1 is P3oD2oD4. R contains 2n records.
To select all the information for a ballot, we do:

(P ./Bid=D1 D) ./D5=Rid
R

6.3 The time line

Before the election the election authority(EA) computes P (Bid, P1, P2, CP1, CP2), D(D1, D2, D4, D5, DC),
CD(CD1,2, CD4,5) and makes public P (Bid, CP1, CP2), D(DC) and CD(CD1,2, CD4,5).

In the preelection audit, the auditor randomly selects half of the records in P . The election authority
(EA) reveals P ./Bid=D1 D for all the requested records. The auditor can check that P1oP2oD2oD4 = S and
that the commitments CP1, CP2, and DC are valid.

During the election, the voters fill in P3.
After the election, EA computes D3 = P3oD2 and R1 = D3oD4 and makes D3 and R1 public.
In the post election audit, the auditor asks EA to either reveal (D1, D2) or (D4, D5), but not both. EA

reveals the requested information. The auditor can either check that P3oD2 = D3 (using P ./Bid=D1 D) or
D3oD4 = R1 (using D ./D5=Rid

R). The chance of EA cheating and not being caught is 50% (see section
6.4). CD1,2 and CD4,5 are also checked.

6.4 Multiple instances of D

Because EA can cheat and not get caught with 50% probability, we introduce multiple instances of D. Thus
we modify the relation D as follows: Let D (decrypt) be the following relation:

D(i,D1, D2, D3, D4, D5, DC), (i,D1) → (D2, D3, D4, D5, DC)

where i is the instance number and the rest are as described in section 6.2
Let CD (commitments to the columns of D) be the following relation:

CD(i, CD1,2, CD3,4), i → (CD12 , CD3,4)

where i is a foreign key pointing to the i attribute of D.
In the post election audit, we can now make k challenges, where k is the number of D instances. The

auditor will ask to open either (D1, D2) or (D4, D5) for each instance of D. The chance that EA cheats and
does not get caught is one out of 2k. Thus we can make it as low as we want by increasing k.

6.5 Multiple-question Ballots

We have been implicitly assuming that there is only one question on the ballot per election. The situation
becomes slightly more complicated if this is not the case. Punchscan works just fine for multiple-question
ballots but the decrypted ballots will preserve the “cross-question” relationships: for example, if 90% of
the people who voted for Alice for Governor also voted for Bob for President, the results will reflect this.
PunchScan can be extended to hide these correlations if desired.

Trivially, of course, if Punchscan works for one-question elections then we can conduct an n-question
election by giving each voter n one-question ballots. If we want to preserve the cross-question relationship
among two or more questions (perhaps if someone voted ’No’ for a recall election they are not allowed to
vote for a replacement candidate) then we could move those questions onto the same ballot. This would
work but seems to us to be not as good (from a ballot design, system overhead, and printing cost point of

9

view) as the case when we are using one ballot and running one election.

However, we can readily modify this scheme to fix that problem. Suppose we are running n one-question
elections. That is, each voter recieves one ballot for each of n elections and votes, then the votes are counted
seperately for each election. In this situation, there is one P -table and one set of D-tables (and associated
R-table) for each of the n elections. Let us note that there is no information contained in the D-tables for
election A that can be used to decrypt the ballots for election B. Since the shuffles for each election are also
independent, we do not need to obscure the link between voter x’s encrypted ballots in election A and B,
because when they are decrypted the shuffling will obscure the cross-question relationship for us. In other
words, we can print the contests of these ballots together, on the same piece of paper, with the same serial
number (and the same P -table row), just as in the original scheme that reveals the correlations. Because the
ballots are decrypted seperately, this does not provide any more information regarding the cross-question
relationships.

7 Proofs

This section contains proofs of some security properties of PunchScan.

7.1 Privacy

In this context, the maintenance of privacy requires that an observer’s probability distribution of the contents
of a given ballot i (i.e.: the value of voter i’s vote) be unchanged by observation of the cryptographically-
hidden data. In other words,

p(bi|PDR) = p(bi|R),

where bi is the value of ballot i, PDR is the entire publicly-observable ballot data matrix, and R is just the
results column of that matrix.

7.1.1 Attacks on P

The most straightforward way for an attacker to use the secret parts of PDR to reveal the vote of voter i
would be to simply decrypt P1,i and P2,i and use those to decode P3,i. If the attacker is unable to break this
cryptography, then learning P would not affect his probability distribution on bi. This cryptography can be
made as strong as is necessary to protect privacy to any desired level of computational security.

7.1.2 Attacks on D

Another method would involve an attack on the shuffle; that is, decrypting the unrevealed link between P
and D (D1) or between D and R (D5). However, the same cryptography is used to secure those columns of
D, so again, an attacker unable to break the cryptography could not learn anything useful from D.

7.2 Integrity

There are four elements of the PunchScan process that are vulnerable to some extent to manipulation of the
vote tally by the Election Authority.

� The ballots may be improperly formed.

� The ballots may be improperly printed.

� The ballot markings may be improperly recorded.

� The marked ballots may be improperly decrypted.

Each of these vulnerabilities is addressed by an audit procedure.

10

7.3 First Audit

The first audit procedure ensures that the ballots are well-formed, meaning that for each ballot, P1 + P2 =
D2 + D4 for the row in each D-matrix associated with that ballot. This involves spoiling some fraction of
the ballots by unlocking this secret data.

In general, suppose there are n ballots, the election authority has cheated by malforming k of them, and
f ballots are chosen at random to be examined. The probability that the election authority gets away with
this cheat is:

thenumberofpossibiliteswheretheauditorchoosesonlyvalidvotes
allthepossiblechoices .

The number of all the possible choices is
(

f
n

)
(n choose f). The number of ways to choose f all valid

votes from a total of n where k of then are invalid, is
(

f
n− k

)
(choose f votes out of n-k that are valid). So

the election authority cheats and gets away with it with a probability p =

0@ f
n− k

1A0@ f
n

1A =
(n−k)!

f!(n−k−f)!
n!

f!(n−f)!
=

(n−k)!
(n−k−f)!

n!
(n−f)!

.

Note that f + k < n, so that n − k − f > 0 and (n − k − f)! exists and it isn’t in the special case of 0!. If
f + k > n the probability is 0.

In the interest of simplicity, from here we may compute two upper bounds on the chance that this attack
will not be detected:

1. (n−k)!
n! × (n−f)!

(n−k−f)! = 1
n×(n−1)×...×(n−k+1)×(n− f)× (n− f − 1)× ...(n− f − k + 1) = (n−f)×(n−f−1)×...(n−f−k+1)

n×(n−1)×...×(n−k+1) =
n−f

n × n−f−1
n−1 × ...× n−f−k+1

n−k+1 = (1− f
n)× (1− f

n−1)× ...× (1− f
n−k+1) < (1− f

n)
k

2. (n−k)!
(n−k−f)!× (n−f)!

n! = (n− k)× (n− k − 1)× ...× (n− k − f + 1)× 1
n×(n−1)×...×(n−f+1) = (n−k)×(n−k−1)×...×(n−k−f+1)

n×(n−1)×...×(n−f+1) =
n−k

n × n−k−1
n−1 × ...× n−k−f+1

n−f+1 = (1− k
n)× (1− k

n−1)× ...× (1− k
n−f+1) < (1− k

n)
f

Thus, our upper bound on the probability that the Election Authority gets away with malforming k out
of n ballots when f of those ballots are audited is min[(1− f

n)k, (1− k
n)f].

7.4 Second Audit

In order to check that a given ballot receipt was properly printed, one can reencrypt it (that is, recompute
the commitments) and compare it with the P -matrix. Suppose n ballots remain unspoiled after the First
Audit, f are actually used by voters who later check the commitments, and k of them are improperly
printed. Once again, the upper bound on the probability that none of the misprinted ballots are detected is
min[(1− f

n)k, (1− k
n)f].

7.5 Third Audit

In addition to checking that the ballot is correctly printed, one can also check whether the recorded ballot
mark matches the mark on the receipt. In effect, this verifies the correctness of P3. Again, if n ballots remain
unspoiled after the First Audit, f are actually used by voters who verify that their ballot marks are correctly
recorded online, and k ballots are incorrectly recorded, then the upper bound on the probability that none
of the incorrectly-recorded marks are detected is min[(1− f

n)k, (1− k
n)f].

7.6 Fourth Audit

The Election Authority may influence the vote tally by incorrectly decrypting the ballots. There are two
methods we may use for auditing the Election Authority to ensure that this does not occur.

11

7.6.1 Ballot-wise Auditing

Suppose the auditor goes through a D-matrix ballot-by-ballot (that is, row-by-row) and randomly chooses
whether to inspect (open) the “left” or “right” commitment for each ballot. This situation is different from
the first three audits because all ballots are inspected, but each inspection has only a 1

2 chance of catching
a modification. This makes the situation simpler; the chance of k modified ballots all escaping detection is
1
2k .

7.6.2 Table-wise Auditing

On the other hand, the auditor may choose to open all the “left” or “right” commitments for a given D-
matrix. Assuming that the Election Authority intends to cheat during the decryption and is aware of this,
he will put all his cheating in a given D-matrix in either the “left” or “right” commitment, so that he has a
1
2 chance of escaping detection when that D-matrix is inspected. If there are n D-matrices, then the chance
of escaping detection if any ballots are incorrectly decrypted is 1

2n .

7.6.3 Comparison

Both methods of auditing have desirable properties. The Ballot-wise method has the feature that the
probability of detecting cheating is a function of the number of ballots cheated on, and increases exponentially
with a linear increase in number of cheated ballots. The Table-wise method has the feature that the audit
does not reduce the size anonymity set created by the shuffle.

8 Permutations

PunchScan requires two types of permutations to be generated:

� row permutations

� mark permutations

Row permutations refer to the permutations of the rows of the D table and mark permutation refer to the
order in which the positions are associated with marks on the ballot and to D2 and D4.

8.1 Row Permutations Generation

Consider an “unshuffled” D-matrix where D1 = [1, 2, . . . 2n], so row x of PDR represents ballot x across
the entire row, and D5 is blank. The EA should generate this matrix as the first step; call it δ. Generating
the row permutations will therefore take the form of the generation of D1 . . . DnD , where Di denotes the ith

shuffled D-matrix.
The D-matrices will be generated from δ as follows:

1. Randomly shuffle the rows of δ; call this D1.

2. Let D1
5 equal a random shuffling of {1, 2, . . . , 2n}.

3. For each i from 2, 3, . . . , 2n, let Di equal a random shuffling of the rows of D1.

This involves nD +1 permutations of {1, 2, . . . , 2n}. It should be clear that if (y, Di
1) = x and (y, Di

5) = z,
then for all j, (y, Dj

1 = x) implies that (y, Dj
5) = z; in other words, since each row of D1 contains a pointer

to a (unique) row (ballot) of P in D1 and a (unique) pointer to R in D5, reordering its rows does not change
the destination (in R) of any ballot in P .

12

8.2 Implementation

8.2.1 Permutation Algorithm

We will use the following permutation algorithm to permute the unshuffled matrix. This algorithm will
generate a permutation π of 1, 2, . . .m, given as input m, some encryption function E, and some key K.

First, create a table with m rows and 2 columns. Populate column 1 of the table with 1, 2, . . . m and
column 2 of the table with EK(1), EK(2), . . . EK(m); in other words, (i, 2) = EK((i, 1)) for every row i.
Next, sort the table according to column 2. Let π(i) = (i, 1); column 1 is now a permutation of 1, 2, . . . m.

If the key K were generated randomly, and the function E is a good encryption algorithm, then the
permutation output by the algorithm will be random. (That is, it will preserve any randomness in K.)

8.2.2 Application of the Algorithm

The EA can use this algorithm to implement the D-matrix generation algorithm above as follows:

1. Generate a permutation πD1 of 1 . . . 2n. Let D1
1 = δ, sorted by πD1 ; that is, row x of δ becomes row

πD1(x) of D1.

2. Generate a permutation πR of 1 . . . 2n. Let D1
5 = πR.

3. For each i from 2 to nD, create Di by generating a permutation πDi of 1 . . . 2n. Let row y of D1

become row πDi(y) of Di.

8.3 Mark Permutations

The mark permutations, in contrast, are much simpler to generate. In order to produce all possible associa-
tions of candidate names with ballot symbols, it is not necessary to randomly permute both lists; it is only
necessary to cyclically shift both lists a (different) random amount. So, to generate the mark permutations
for ballot x, where the ballot has c candidate names on the top page and c mark symbols on the bottom
page, the EA need only generate two random numbers between 1 and c, and record these numbers as P1

and P2 to indicate the shift distance for the pages of ballot x.
Each D-matrix instance will require its own set of decrypting mark permutations (columns D2 and

D4). (It is for this reason that at least the decrypting mark permutations must be performed after the row
permutations.) For each row of each Di, the EA generates a random number between 1 and c, and records
this number in Di

2. Di
4 is set such that the modular sum of the ballot’s entries in P1 and P2 equals the sum

of its entries in D2 and D4.

8.3.1 Random Number Generation

The permutation algorithm described above can also be used for the random number generation. The
Election Authority can compute a permutation π of 1, 2, . . . , c and use π(1) as the random number.

9 Commitments

This section describes how the commitments in PunchScan are computed. Comma (“,”) stands for concate-
nation. There are two AES 128-bit keys secret MK1 and MK2, and a public 128-bit constant, C.

9.1 Computing AES keys

This section requires the use of two 128-bit AES keys. Given message M , let M128 be the first 128 bits of
M (if M is shorter then 128 bits, M will be padded with trailing zeros) a random key SKm is generated as
follows:

SKm = DMK1(C ⊕ EMK2(C ⊕ EMK1(M128)))

where ⊕ is the XOR operation and E and D are AES Encrypt and Decrypt EBC NoPadding operations.

13

9.2 Commitment Algorithm

Given a message M , the commitment to M is computed as follows:

1. generate a 128-bit AES key Km as described in 9.1

2. encrypt the public constant C with Km, using AES 128-bit ECB NoPadding. Let the result be
SKm = AESKm

(C). SKm has 128 bits.

3. concatenate M with SKm and hash everything using SHA256, resulting in h1. So, h1 = SHA256(M, SKm);

4. let h2 = SHA256(M, AESSKm(h1)), where the AES encryption is AES 128bit ECB PKCS#5Padding

5. the commitment is h1, h2 (h1 concatenated with h2)

Below is how to compute M for all the commitments needed in PunchScan.

9.2.1 M for P1

M is obtained by concatenating the serial number of the ballot to a constant particular to P1 and with the
text on the top page of the ballot.
M = i, “P1′′, P1 where i is a string representing the serial number of the ballot, “P1′′ is a constant string
(capital P concatenated with digit 1) and P1 is the string in P1 (the string representation of the top page)

9.2.2 M for P2

M is obtained by concatenating the serial number of the ballot to a constant particular for P2 and with the
text on the bottom page of the ballot.
M = i, “P2′′, P2 where i is a string representing the serial number of the ballot, “P2′′ is a constant string
(capital P concatenated with digit 2) and P2 is the string in P2 (the string representation of the bottom
page)

9.2.3 M for rows in D

M is obtained by concatenating all the known values in a row in D. The known values are: the pointer to
the P table (D1), the first mark permutation (D2), the second mark permutation (D4) and the link to the
R table (D5).
M = D1, D2, D4, D5 all being string representation of fields in D

9.2.4 M for columns in D

M is obtained by concatenating all the values in the first column and then concatenating all the values in
the second column.
For the leftmost columns
M = D1,1, D2,1, D3,1, . . . , Dn,1, D1,2, D2,2, D2,3 . . . Dn,2 all being string representations
For the right most columns
M = D1,4, D2,4, D3,4, . . . , Dn,4, D1,5, D2,5, D2,5 . . . Dn,5 all being string representations

We only need to protect two 128-bit AES keys, MK1 and MK2 in order to preserve the security of the
system.

Note that the public cannot verify that the AES keys have been generated in this way, or rather in some
other way. Therefore, this system unfortunately introduces a potential covert channel via the AES keys.

10 Acknowledgments

We would like to thank David Chaum, Poorvi Vora, Rick Carback, Jeremy Robin and Ben Adida, for the
vibrant discussions and insightful comments.

14

